- Tytuł:
-
Detekcja nieszczelności kotła fluidalnego z użyciem modeli rozmyto-neuronowych
Approach to boiler leak detection with fuzzy neural models - Autorzy:
-
Szadkowski, B.
Jankowska, A. - Powiązania:
- https://bibliotekanauki.pl/articles/257517.pdf
- Data publikacji:
- 2011
- Wydawca:
- Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
- Tematy:
-
detekcja awarii
systemy rozmyto-neuronowe
kocioł fluidalny
modelowanie
detection of outage
fuzzy-neural system
fluidised bed boiler
modelling - Opis:
-
Zreferowano badania modelowe nad detekcją nieszczelności kotłów fluidalnych z wykorzystaniem danych z archiwum. Modelowanie prowadzono w przyborniku Fuzzy Logic pakietu Matlab. Omówiono dwa podejścia do rozwiązania problemu. W pierwszym - opracowano modele rozmyto-neuronowe typu Takagi-Sugeno-Kanga (TSK) 4 zmiennych procesowych o dużej wrażliwości na przeciek. Uśrednione residua tych zmiennych, w przesuwnym oknie czasowym, pozwoliły wykryć 7 z 8 rozważanych przypadków nieszczelności. Oceniono długość okna i uzyskane wyprzedzenie detekcji względem wyłączenia bloku. Następnie opracowano i przetestowano model awarii o binarnym wyjściu. Równoległe wykorzystanie opracowanych modeli pozwoliło na wykrycie z kilkudniowym wyprzedzeniem wszystkich analizowanych awarii, potwierdzając przydatność modeli TSK w ważnym zadaniu eksploatacyjnym. Wskazano dalsze kierunki prac.
The research results into leak detection in a fluidised bed boiler are presented. The studies took advantage of the historical data from DCS in the professional power plant. Models of neuro-fuzzy Takagi-Sugeno-Kanga (TSK) type were built and tested in the Fuzzy Toolbox of Matlab. The roots of boiler outage (in water-steam pressure system and aside from this system) are indicated. The two approaches to leak detection task are described. In the first, the models of the 4 process variables sensitive to leakage were built. The residues of these models were evaluated in a moving time window. The length of the time window and the advance of leakage detection are discussed. Next, the model the TSK of the boiler faults with binary output was built and tested. Training data was collected for 3 cases of raised outage (models output - 1) and the normal work of installation (models output - 0). The parallel usage of proposed TSK models provided a successful detection of all studied fault cases a few days in advance. This has confirmed the suitability of the fuzzy neural models in an important exploitation task. - Źródło:
-
Problemy Eksploatacji; 2011, 2; 181-188
1232-9312 - Pojawia się w:
- Problemy Eksploatacji
- Dostawca treści:
- Biblioteka Nauki