Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "bayesian inference" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Zastosowanie wnioskowania bayesowskiego w procesie diagnozowania systemów sterowania ruchem kolejowym
Application of bayesian inference in the process of diagnosing railway traffic control systems
Autorzy:
Nowakowski, Waldemar
Powiązania:
https://bibliotekanauki.pl/articles/248547.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
systemy sterowania ruchem kolejowym
diagnostyka
wnioskowanie bayesowskie
railway traffic control systems
diagnostics
Bayesian inference
Opis:
Systemy sterowania ruchem kolejowym odgrywają istotne znaczenie w zapewnieniu bezpieczeństwa przemieszczania osób i przewozu ładunków. Bardzo duża ilość urządzeń i systemów sterowania ruchem kolejowym, a także fakt, że wykonane są one w różnej technologii powoduje istotne utrudnienie w zapewnieniu, przez zarządcę infrastruktury kolejowej, wymaganego poziomu niezawodności. Konieczne jest więc wspieranie procesu ich utrzymania z użyciem metod diagnostyki technicznej. Oprogramowanie diagnostyczne CUiD przeznaczone jest głównie dla rozwiązań technicznych konkretnych producentów systemów sterowania ruchem kolejowym. Dlatego też autor artykułu zaproponował uniwersalną metodę diagnostyczną wykorzystującą wnioskowanie bayesowskie. Bazując na tej metodzie oraz protokole SNMP opracowano oprogramowanie komputerowe, które następnie użyto do diagnozowania uszkodzeń systemu SSP.
Railway traffic control systems are essential to ensure the safety of passengers and freight transport. The very large number of controlling devices and systems, but also the fact that they are made in different technologies make it very difficult for the infrastructure manager to ensure the required level of reliability. Therefore, it is necessary to support the process of their maintenance with support of the application of technical diagnostic methods. The software M&DC is created mainly for technical solutions of specific manufacturers of railway traffic control systems. Therefore, the author of the article proposed a universal diagnostic method based on Bayesian inference. On the basis of this method and the SNMP protocol, computer software was developed, which is used to diagnose faults in the LCPS.
Źródło:
Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie. Seria: Materiały Konferencyjne; 2019, 2(119); 159--168
1231-9171
Pojawia się w:
Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie. Seria: Materiały Konferencyjne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zróżnicowanie koniunktury. Metody wnioskowania statystycznego
Variation of business activity-methods of statistical inference
Autorzy:
Męczarski, Marek
Powiązania:
https://bibliotekanauki.pl/articles/500133.pdf
Data publikacji:
1998
Wydawca:
Szkoła Główna Handlowa w Warszawie
Tematy:
Koniunktura gospodarcza, Metody statystyczne, Wnioskowanie statystyczne, Wnioskowanie bayesowskie
Business trends, Statistical methods, Inferential statistics, Bayesian inference
Opis:
In this chapter some typical methods of statistical inference are presented in order to analyse results of investigations of economic conditions based on questionnaires. One considers variation in the structure of answers between particular questions, within particular groups of questions, between particular groups (subpopulations) of enterprises and within the subpopulations. One also shows a way to analyse variation of the balance of answers (i. e. the difference between the fractions "increase" and "decrease") with respect to time. The methods are the well-known Pearson's chi-square test and a test based on the asymptotic normal distribution. Finally, one addresses the problem of Bayesian analysis of the business activity results by demonstrating some simple estimation and testing procedures. The data come from the database of IRG SGH (Institute of Economic Development, Warsaw School of Economics).
Źródło:
Prace i Materiały Instytutu Rozwoju Gospodarczego SGH; 1998, 60; 31-63
0866-9503
Pojawia się w:
Prace i Materiały Instytutu Rozwoju Gospodarczego SGH
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badanie determinant pozostawania bez pracy osób młodych z wykorzystaniem semiparametrycznego modelu Coxa
An analysis of unemployment duration determinants among young people using semiparametric Cox model
Autorzy:
Grzenda, Wioletta
Powiązania:
https://bibliotekanauki.pl/articles/422828.pdf
Data publikacji:
2012
Wydawca:
Główny Urząd Statystyczny
Tematy:
bezrobocie
semiparametryczny model Coxa
wnioskowanie bayesowskie
metody MCMC
unemployment
semiparametric Cox model
Bayesian inference
Markov chain Monte Carlo method
Opis:
Obecnie wśród osób rozpoczynających karierę zawodową obserwuje się szczególnie dużą wartość wskaźnika bezrobocia. Celem niniejszego opracowania jest identyfikacja czynników demograficznych oraz społeczno-ekonomicznych wpływających na długość czasu pozostawania bez pracy tych osób. W badaniu wykorzystano m.in. bayesowski semiparametryczny model Coxa dla danych indywidualnych. Wykorzystanie modelu przeżycia daje możliwość analizy jednoczesnego wpływu wybranych zmiennych objaśniających na czas pozostawania bez pracy. Natomiast podejście bayesowskie umożliwia uwzględnienie w badaniu, za pomocą rozkładów a priori, dodatkowej informacji spoza próby. Estymację modeli przeprowadzono z wykorzystaniem metod Monte Carlo opartych na łańcuchach Markowa, a dokładniej algorytmu ARMS.
High unemployment rates are observed among people beginning job careers nowadays. The aim of the work is to identify demographic and socio-economic factors influencing the unemployment duration in this age group. In this research, Bayesian semiparametric Cox model for individual data has been used. The advantage of survival model is the possibility of the analysis of the impact of selected independent variables on unemployment duration. The Bayesian approach with a priori distribution makes the use of out of the sample knowledge possible. The model has been estimated using Markov chain Monte Carlo method with ARMS algorithm.
Źródło:
Przegląd Statystyczny; 2012, 59, numer specjalny 1; 123-139
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Konekcjonistyczne modele wyjaśniania procesów poznawczych w kognitywistyce.
Connectionist Models of Explanation of Cognitive Processes in Cognitive Science.
Autorzy:
Pacholik-Żuromska, Anita
Powiązania:
https://bibliotekanauki.pl/articles/521636.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Warmińsko-Mazurski w Olsztynie
Tematy:
konekcjonizm
funkcjonalizm
maszyna Turinga
sztuczne sieci neuronowe
Bayesowska teoria indukcji
enaktywizm
connectionism
functionalism
Turing machine
artificial neural networks
Bayesian inference
enactivism
Opis:
Celem artykułu jest przegląd i analiza modeli konekcjonistycznych na tle faz rozwoju kognitywistyki. Konekcjonizm, jako druga faza rozwoju kognitywistyki, zaoferował najlepsze narzędzia wyjaśniania i modelowania procesów poznawczych. Został on przedstawiony w relacji do wcześniejszej i późniejszej fazy rozwoju kognitywistyki. Wykazuje się tu również kompatybilność konekcjonizmu z enaktywizmem (trzecią fazą) na gruncie proponowanego modelu wyjaśniania, jak kształtuje się poznanie.
The aim of this paper is an overview and analysis of the connectionist models on the basis of the milestones in the development of cognitive science. It is claimed that connectionism, as the second phase of cognitive science, offers the best tools of explanation and modelling of cognition. There is also indicated the compatibility of connectionism and enactivism (the third phase) on the basis of the proposed models of explanation.
Źródło:
Humanistyka i Przyrodoznawstwo; 2017, 23; 43-55
1234-4087
Pojawia się w:
Humanistyka i Przyrodoznawstwo
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod bayesowskich do prognozowania temperatury stali w kadzi odlewniczej i kadzi pośredniej
Application of bayesian methods for forecasting the steel temperature in the ladle and tundish
Autorzy:
Miczka, M.
Powiązania:
https://bibliotekanauki.pl/articles/182209.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Metalurgii Żelaza im. Stanisława Staszica
Tematy:
stalownia
temperatura
stal ciekła
analiza statystyczna
system dynamiczny
wnioskowanie bayesowskie
steel mill
crude steel
temperature
statistical analysis
dynamic system
bayesian inference
Opis:
W artykule przedstawiono podstawy metodyczne dla prognozowania i analizy ryzyka procesu produkcyjnego w hutnictwie żelaza i stali, ze szczególnym uwzględnieniem prognozowania temperatury w różnych fazach procesu stalowniczego. Metodyka oparta jest na reprezentacji systemu dynamicznego w przestrzeni stanu oraz wnioskowaniu bayesowskim. Pozwala to przede wszystkim uchylić założenie o stałości szacowanych parametrów, prowadzić analizę dla całości rozkładu statystycznego oraz uwzględnić tzw. informację a priori czyli pochodzącą spoza zbioru danych. Praca ma charakter przeglądowy i stanowi podstawę do dalszych badań, których ostatecznym celem jest wdrożenie systemu prognozowania i analizy ryzyka w jednej z polskich stalowni, a następnie opracowanie podobnych rozwiązań dla przypadku innych faz procesu hutniczego. Zaprezentowano zakres informacji na który zgodę wyraziło kierownictwo przedsiębiorstwa.
The article presents the methodological basis for forecasting and risk analysis of the production process in the iron and steel industry, with particular emphasis on forecasting temperatures in the different stages of the steelmaking process. The methodology is based on the state space representation of a dynamic system and Bayesian inference. Above all it enables repeal the assumption of a constant estimated parameters, analyze the statistical distribution of the whole and take into account the so-called a priori information, from outside the dataset. Article is a review and provides a basis for further research, with the ultimate goal to implement a system for forecasting and risk analysis in one of the Polish steel mill, and then develop similar solutions for other phases of the metallurgical process. Presented range of information on which business executives expressed consent.
Źródło:
Prace Instytutu Metalurgii Żelaza; 2015, T. 67, nr 2, 2; 58-64
0137-9941
Pojawia się w:
Prace Instytutu Metalurgii Żelaza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie wnioskowania Bayesa do oceny zagrożenia budynków wielkoblokowych na terenach górniczych
Bayesian inference for the assessment of threats to large-block building structures in mining areas
Autorzy:
Rusek, Janusz
Firek, Karol
Powiązania:
https://bibliotekanauki.pl/articles/167706.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Inżynierów i Techników Górnictwa
Tematy:
wnioskowanie Bayesa
szkody górnicze w budynkach
ocena ryzyka uszkodzeń
oddziaływania górnicze
Bayesian inference
mining damage to buildings
damage risk assessment
mining impacts
Opis:
W artykule przedstawiono przykłady wykorzystania modeli opartych na formalizmie wnioskowania Bayesa do analizy zagrożenia budynków zlokalizowanych na terenach górniczych. Przedmiotem badań była grupa 126 budynków wzniesionych w technologii wielkoblokowej. Przedstawiono metody wnioskowania wykorzystane w dotychczasowych badaniach ryzyka powstawania uszkodzeń w budynkach narażonych na negatywne skutki eksploatacji górniczej. Obejmowały one ocenę stanu technicznego (st), w ramach której do budowy modelu zastosowano naiwną klasyfikację Bayesa, a także analizę intensywności uszkodzeń elementów składowych budynku, z wykorzystaniem Bayesowskich sieci przekonań. W konkluzji przedstawiono koncepcję uszczegółowienia wyników wcześniejszych badań. Polega ona na samoistnym generowaniu struktury sieci Bayesa w oparciu o bazę danych o intensywności uszkodzeń istniejących budynków.
This research paper provides examples of the use of models based on the formalism of Bayesian inference for the analysis of the threats to building structures located in mining areas. The subject of the research study was a group of 126 buildings erected in the large-block technology. The authors presented the inference methods of the risk of the occurrence of damage to buildings exposed to the adverse effects of mining exploitation, which were used in the previous studies. They included the assessment of the technical condition (st), where the naive Bayes classification was used to build the model, as well as the analysis of the intensity of damage to the components of a building structure, using the Bayesian belief networks. The conclusion presents the concept of detailing the results of the previous research. It involves the Bayesian network structure being spontaneously generated, based on the database on the intensity of damage to the existing buildings.
Źródło:
Przegląd Górniczy; 2019, 75, 2; 7-12
0033-216X
Pojawia się w:
Przegląd Górniczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estymowane modele równowagi ogólnej i autoregresja wektorowa. Aspekty teoretyczne
An Estimated General Equilibrium Model and Vector Autoregression. Theoretical Aspects
Autorzy:
Wróbel-Rotter, Renata
Powiązania:
https://bibliotekanauki.pl/articles/422792.pdf
Data publikacji:
2013
Wydawca:
Główny Urząd Statystyczny
Tematy:
DSGE-VAR
dynamiczny stochastyczny model równowagi ogólnej
wnioskowanie bayesowskie
specyfikacja rozkładu a priori
dynamic stochastic general equilibrium model
Bayesian inference
prior specification
Opis:
Model DSGE-VAR składa się z dwóch modeli autoregresji wektorowej: pierwszy z nich, pomocniczy, jest aproksymacją estymowanego modelu równowagi ogólnej, zapisanego w formie reprezentacji w przestrzeni stanów, i służy konstrukcji rozkładu a priori dla drugiego, szacowanego dla danych obserwowanych. Łączne wnioskowanie o parametrach modelu strukturalnego i autoregresyjnego jest możliwe po zbudowaniu odpowiednich rozkładów prawdopodobieństwa, stanowiących podstawę metod bayesowskich. Kluczową rolę pełni parametr wagowy, ustalający optymalne proporcje obydwu podejść i mający zasadnicze znaczenie dla oszacowania brzegowej gęstości obserwacji, stanowiącej podstawę do porównań mocy wyjaśniającej modeli. Artykuł stanowi syntezę informacji teoretycznych związanych z metodologią DSGE-VAR, i może być traktowany jako etap wstępny i wprowadzający w badania empiryczne.
The DSGE-VAR model consists of two models of vector autoregressions: the first one approximates linearised solution of the dynamic stochastic general equilibrium model and is used as a tool for construction of a prior distribution for the second one, estimated with the observed data. Combined inference is possible on the basis on probability distributions with the Bayesian techniques. The key role in the hybrid model is played by the weighting parameter that defines the relative proportions of the structural and autoregressive models. It has crucial impact for the marginal data density that allows to compare the power of different models. The main purpose of the paper is to present in details model assumptions and estimation.
Źródło:
Przegląd Statystyczny; 2013, 60, 3; 359-380
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza płodności kobiet w Polsce z wykorzystaniem bayesowskiego modelu regresji Poissona
Fertility analysis of women in Poland using Bayesian Poisson regression model
Autorzy:
Grzenda, Wioletta
Powiązania:
https://bibliotekanauki.pl/articles/422947.pdf
Data publikacji:
2012
Wydawca:
Główny Urząd Statystyczny
Tematy:
płodność
model regresji Poissona
wnioskowanie bayesowskie
metody Monte Carlo oparte na łańcuchach Markowa
fertility
Poisson regression model
Bayesian inference
Markov chain Monte Carlo method
Opis:
Celem niniejszej pracy jest zbadanie zachowań prokreacyjnych Polek poprzez identyfikację czynników je determinujących z wykorzystaniem metod bayesowskich. W pracy zastosowano bayesowski model regresji Poissona. Wybrany model umożliwił określenie kierunku i skali wpływu wybranych czynników na liczbę dzieci posiadanych przez kobiety. Natomiast podejście bayesowskie dało możliwość włączenia do modelu informacji a priori oraz lepsze oszacowanie parametrów modelu. W estymacji wykorzystano metody Monte Carlo oparte na łańcuchach Markowa, a w szczególności próbnik Gibbsa. Badanie przeprowadzono na podstawie danych indywidualnych pochodzących z polskiego badania retrospektywnego „Przemiany rodziny i wzorce dzietności w Polsce” (1991). W analizie płodności kobiet uwzględniono następujące czynniki: miejsce zamieszkania, wykształcenie, fakt pozostawania w związku małżeńskim, zatrudnienie oraz wyznanie. Otrzymane rezultaty porównano z dotychczasowymi wynikami badań dla Polski i innych krajów.
The primary objective of the work is to use Bayesian methods to investigate women fertility in Poland and identify key factors influencing it. Bayesian Poisson regression model has been used in the analysis. The model allows determining factors that have a significant impact on the number of children born. Moreover Bayesian approach makes it possible to incorporate a priori knowledge and improve the estimation of model parameters. The model has been estimated using Markov chain Monte Carlo method with Gibbs sampling. The work has been based on the Polish study ”Family changes and Fertility Patterns in Poland” (1991). The following attributes have been considered in the analysis of women fertility: place of living, education, marital status, employment and religion. The results have been compared with the results of related research for Poland and other countries.
Źródło:
Przegląd Statystyczny; 2012, 59, 2; 179-198
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estymowane modele równowagi ogólnej i autoregresja wektorowa. Aspekty praktyczne
An Estimated General Equilibrium Model and Vector Autoregression. Practical Issues
Autorzy:
Wróbel-Rotter, Renata
Powiązania:
https://bibliotekanauki.pl/articles/423053.pdf
Data publikacji:
2013
Wydawca:
Główny Urząd Statystyczny
Tematy:
DSGE-VAR
dynamiczny stochastyczny model równowagi ogólnej
wnioskowanie bayesowskie
brzegowa gęstość obserwacji
specyfikacja rozkładu a priori
zbieżność MCMC
dynamic stochastic general equilibrium model
Bayesian inference
marginal data density
prior specification
convergence diagnostics of MCMC
Opis:
Model DSGE-VAR składa się z dwóch modeli wektorowej autoregresji: pierwszy z nich jest aproksymacją liniowego rozwiązania estymowanego modelu równowagi ogólnej i służy konstrukcji rozkładu a priori dla drugiego, szacowanego dla danych obserwowanych. Opracowanie jest poświęcone szczegółowemu omówieniu aspektów praktycznych, zawiązanych z modelami DSGE-VAR. Główny nacisk został położony na zagadnienia specyfikacji a priori dla parametru wagowego: rozpatrzono szereg modeli warunkowych oraz modele z estymowanym parametrem wagowym, po przyjęciu alternatywnych rozkładów a priori: jednostajnego, przesuniętego gamma i zmodyfikowanego rozkładu beta. Oszacowanie szeregu modeli warunkowych pozwala na ujawnienie znacznej zmienności logarytmu brzegowej gęstości obserwacji implikujących wrażliwość czynników Bayesa, istotnie zmieniających się w odpowiedzi na niewielkie zmiany specyfikacji rozkładu a priori dla parametru wagowego. Estymacja modelu pełnego pozwala na optymalne ustalenie rzędu opóźnienia wektorowej autoregresji oraz sprawdzenie wrażliwości wnioskowania a posteriori o parametrze wagowym w zależności od typu i rozproszenia rozkładu a priori. W drugiej części opracowania omówiono sposoby oceny stabilności numerycznej w modelach DSGE-VAR.
The DSGE-VAR model consists of two models of vector autoregressions: the first one approximates the linearised solution of the dynamic stochastic general equilibrium model and is used as a tool for construction of a prior distribution for the second one, estimated with the observed data. The main purpose of the paper is to present practical aspects of DSGE-VAR estimation, verification and comparison, based on the marginal data density. It can be obtained after considering conditional models or by estimation of fully specified models, after assuming uniform, generalised gamma and modified beta distributions. The conditional models lead to serious variability of the Bayes factors that has little economic interpretation. Posterior inference for the weighting parameter from fully estimated models is less sensitive to its prior specification. In the second part of the paper author discusses convergence diagnostics used for checking stability of MCMC algorithms.
Źródło:
Przegląd Statystyczny; 2013, 60, 4; 477-498
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Istotność statystyczna w czasach big data
Statistical significance in the era of big data
Autorzy:
Szreder, Mirosław
Powiązania:
https://bibliotekanauki.pl/articles/962757.pdf
Data publikacji:
2019
Wydawca:
Główny Urząd Statystyczny
Tematy:
wnioskowanie statystyczne
testowanie hipotez
istotność staty-styczna
wskaźnik p-value
big data
podejście bayesowskie
statistical inference
hypothesis testing
statistical significance
p-value
big
data
bayesian approach
Opis:
Rozwój nowych technologii wpływa zarówno na realizację badań statystycznych, jak i na postrzeganie ich wyników w świetle innych źródeł informacji. W tym kontekście powraca w środowisku naukowym temat roli testowania hipotez statystycznych oraz interpretowania i przedstawiania jego wyników, w tym stosowania kategorii istotności statystycznej oraz wskaźnika p-value. Inspiracją do powstania tego opracowania stała się fala dyskusji wokół tego zagadnienia toczących się na forum czasopism „Nature” i „The American Statistician” na początku 2019 r. Celem artykułu jest ukazanie szans i zagrożeń, jakie big data stwarza dla weryfikacji hipotez i wnioskowania statystycznego, zarówno w ujęciu klasycznym, jak i w podejściu bayesowskim. Autor uzasadnia konieczność zaniechania zbyt daleko posuniętych uproszczeń w realizacji procesu wnioskowania statystycznego oraz prezentowaniu wyników weryfikacji hipotez. Chodzi zarówno o postulat uwzględnienia jakości danych próbkowych, zwłaszcza typu big data, jak i o podawanie pełnej informacji o modelu statystycznym, na podstawie którego przeprowadza się wnioskowanie.
The development of new technologies has affected both the procedures of traditional statistical surveys and the perception of their results in the light of other available sources of information. In this connection, the role of the verification of statistical hypotheses and of the interpretation and presentation of its results, including the use of statistical significance and p-value, has recently returned as a frequent topic for discussion among the scientific community. The author was inspired to write this paper by a wave of discussion regarding this matter held at the beginning of 2019 in the Nature and The American Statistician journals. The aim of the paper is to present the opportunities provided and challenges posed by the use of big data to the hypothesis verification process and to statistical inference, both in the traditional and Bayesian approaches. The author explains the necessity of discontinuing adopting excessive simplifications while performing statistical inference and presenting the results of the verification of hypotheses. This involves both the postulate to pay greater attention to the quality of sampling data, especially in the case of data originating from big data sets, as well as the postulate to provide full information about the statistical model on the basis of which the inference is being performed.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2019, 64, 11; 42-57
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies