Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "adaptive modeling" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Zastosowanie metod czarnej skrzynki do prognozowania wartości wybranych wskaźników jakości ścieków dopływających do oczyszczalni komunalnej
Black-box forecasting of selected indicator values for influent wastewater quality in municipal treatment plant
Autorzy:
Szeląg, B.
Bartkiewicz, L.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/236740.pdf
Data publikacji:
2016
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
ścieki komunalne
modelowanie
prognozowanie jakości ścieków metoda MARS
metoda lasów losowych (RF)
metoda samoorganizujących się sieci neuronowych (SOM)
metoda drzew wzmacnianych (BT) metoda analizy składowych
głównych (PCA)
sewage
modeling
sewage quality forecasting
MARS (multivariate adaptive regression spline)
random forest (RF)
self-organizing map (SOM)
boosted trees (BT)
principal component analysis (PCA)
Opis:
Prognozowanie ilości i jakości ścieków dopływających do oczyszczalni komunalnej z odpowiednim wyprzedzeniem czasowym daje możliwość optymalnego sterowania wieloma parametrami procesów oczyszczania ścieków. Dlatego prowadzi się badania mające na celu opracowanie modeli matematycznych (fizykalnych deterministycznych i operatorowych statystycznych), prognozujących zarówno ilość, jak i jakość ścieków dopływających do oczyszczalni. W artykule zbadano możliwość zastosowania prostszych modeli operatorowych do prognozowania wartości wybranych wskaźników jakości ścieków na dopływie do oczyszczalni (BZT5, zawiesiny ogólne, azot ogólny i amonowy, fosfor ogólny) jedynie na podstawie wyników pomiarów natężenia przepływu ścieków oraz – w celu porównania – na podstawie ich zmierzonych wartości. Do tego celu zastosowano metody czarnej skrzynki typu MARS oraz lasy losowe (RF). Dodatkowo przedstawiono możliwość połączenia metody lasów losowych z modelem klasyfikacyjnym (RF+SOM). Do identyfikacji danych określających zmienność wybranych wskaźników jakości ścieków zastosowano metody drzew wzmacnianych (BT) i analizy składowych głównych (PCA). Modele opracowano na podstawie wyników ciągłych pomiarów dobowych przeprowadzonych w latach 2013–2015 w oczyszczalni ścieków komunalnych w Rzeszowie.
Forecasting the amount and quality of wastewater flowing into a treatment plant sufficiently in advance, enables effective control of numerous treatment process parameters. Therefore, mathematical (physical deterministic and time series statistical) models forecasting both the amount and quality of wastewater inflow into a sewage treatment plant are under development. In this paper, a possibility of simpler time series models application to forecasting values of selected indicators (biochemical oxygen demand (BOD5), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and ammonium (NH4+)) of sewage quality in the inflow into a treatment plant was investigated. The research was based solely on sewage flow rate data and – for the purpose of comparison – the actual measured indicator values. For this purpose, MARS type black-box and random forest (RF) methods were used. Also, a possibility of combining the RF method with a classification model (RF+SOM) was investigated. Boosted trees (BT) and principal component analysis (PCA) methods were applied for identification of data that determine variability of the selected sewage quality indicators. The models were developed on the basis of continuous daily measurements performed in the period of 2013–2015 in the municipal sewage treatment plant in Rzeszow.
Źródło:
Ochrona Środowiska; 2016, 38, 4; 39-46
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies