Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Vector Autoregression" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Modeling Macro-Financial Linkages: Combined Impulse Response Functions in SVAR Models
Autorzy:
Serwa, Dobromił
Wdowiński, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2119956.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
vector autoregression
Cholesky decomposition
combined impulseresponse
banking sector
real economy
Opis:
We estimated a structural vector autoregressive (SVAR) model describing the links between a banking sector and a real economy. We proposed a new method to verify robustness of impulse-response functions to the ordering of variables in an SVAR model. This method applies permutations of orderings of variables and uses the Cholesky decomposition of the error covariance matrix to identify parameters. Impulse response functions are computed and combined for all permutations. We explored the method in practice by analyzing the macro- financial linkages in the Polish economy. Our results indicate that the combined impulse response functions are more uncertain than those from a single model specification with a given ordering of variables, but some findings remain robust. It is evident that macroeconomic aggregate shocks and interest rate shocks have a significant impact on banking variables.
Źródło:
Central European Journal of Economic Modelling and Econometrics; 2017, 4; 323-357
2080-0886
2080-119X
Pojawia się w:
Central European Journal of Economic Modelling and Econometrics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Oddziaływanie inflacji na wzrost gospodarczy w Polsce w okresie 1991-2009
The impact of inflation on economic growth in Poland in the period 1991-2009
Autorzy:
Misztal, P.
Powiązania:
https://bibliotekanauki.pl/articles/399322.pdf
Data publikacji:
2010
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
inflacja
wzrost gospodarczy
model autoregresji wektorowej
inflation
economic growth
vector autoregression model
Opis:
The main aim of the study was to analyze the impact of inflation on the economic growth in Poland in the period from 1991 to 2009. In the paper, methods based on the literature study of international economics and international finance as well as econometric methods (Vector Autoregression Model - VAR) were used. All statistics used in the paper came from the statistical base EconStats. On the basis of the analysis of the relationship between inflation and the economic growth in Poland in the period from 1991 to 2009 you can point to several key conclusions. Firstly, relationship between the inflation rate and the dynamics of real GDP in Poland was relatively important in this period. Moreover, on the basis of VAR model estimates, a negative influence of inflation on the economic growth in Poland over considered period was confirmed. The results also revealed that changes in the inflation rate accounted for 0.5% variability of the growth rate of real GDP in Poland after a year from the shock. Moreover, the existence of non-linear relationship between inflation and economic growth in Poland was confirmed and two threshold levels of inflation amounted to 2.49% and 11.8% were estimated.
Źródło:
Ekonomia i Zarządzanie; 2010, 2, 3; 46-57
2080-9646
Pojawia się w:
Ekonomia i Zarządzanie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie inflacji w Polsce na podstawie modeli autoregresji wektorowej
Forecasting Inflation in Poland Based on Vector Autoregressive Models
Projections relatives à l’inflation en Pologne sur la base des modèles autorégressifs vectoriels
Прогнозирование инфляции в Польше на основе модели векторной авторегрессии
Autorzy:
Wójcik, Szymon
Powiązania:
https://bibliotekanauki.pl/articles/543416.pdf
Data publikacji:
2015-01
Wydawca:
Główny Urząd Statystyczny
Tematy:
Model wektorowej autoregresji
Prognozowanie
Inflacja
Zmienność poziomu cen
Vector Autoregression Model (VAR)
Forecasting
Inflation
Price level variability
Opis:
В статье были использованы модели векторной авторегрессии для прогнозирования месячного показателя потребительских цен в Польше. Выбор используемых макроэкономических переменных соответствовал трем теориям формирования инфляции: монетаристской, кейнсианской (курсовой) и издержек. В прогнозировании была использована концепция вне выборки (out-of-sample), а качество результатов было обследовано с использованием ошибок прогноз ex post.
W artykule wykorzystano modele wektorowej autoregresji do prognozowania miesięcznego indeksu cen konsumenta w Polsce. Dobór użytych zmiennych makroekonomicznych odpowiadał trzem teoriom powstawania inflacji: monetarystycznej, keynesowskiej i kosztowej. W prognozowaniu wykorzystano koncepcję prognozowania poza próbę (out-of-sample), a jakość wyników zbadano przy pomocy błędów prognoz ex post.
The article presents a usage of vector autoregressive models in forecasting polish consumer price index. Macroeconomic variables used in this paper are considered to reflect particular economic theories describing causes of inflation. Out-of-sample methodology was used in forecasting process. Accuracy of results was diagnosed by using ex post forecasting errors.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2015, 1; 28-41
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Źródła fluktuacji realnego efektywnego kursu EUR/ PLN
Sources of real exchange rates fluctuations EUR/ PLN
Autorzy:
Waszkowski, Adam
Powiązania:
https://bibliotekanauki.pl/articles/452784.pdf
Data publikacji:
2011
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
realny efektywny kurs walutowy, model wektorowej autoregresji, dekompozycja wariancji błędu prognozy
real exchange rate, vector autoregression model, forecast error variance decomposition
Opis:
W artykule poruszono problem wyjaśnienia źródła fluktuacji realnego efektywnego kursu walutowego na przykładzie EUR/ PLN wykorzystując podejście równowagi. Punktem wyjścia było opracowanie modelu wektorowej autoregresji oraz jego strukturalnej postaci. Specyfikacji modelu dokonano w oparciu o pracę Claridy i Galiego [1994], wykorzystując kwartalny szereg czasowy 1996- 2010 dla Polski i strefy euro. Pozwoliło to na estymację sytemu składającego się z trzech zmiennych: PKB, REER oraz HICP. Celem określenia źródła fluktuacji realnego kursu EUR/ PLN przeprowadzono dekompozycję wariancji błędu prognozy. Okazało się, że największe znaczenie (powyżej 80%) w wyjaśnieniu wariancji REER mają szoki popytowe.
In the article we've raised the issue of explaining the source of the fluctuation of the Real Effective Exchange Rate (REER) using a equilibrium approach for EUR/PLN example. The starting point was to elaborate a model of vector autoregression and its structural form. The specification of a model have been made based on Clarida and Gali's work. To determine the source of the fluctuation of the real exchange rate we used Forecast Error Variance Decomposition. It resulted that the most important (more than 80%) in explaining the variance of the REER are demand shocks.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2011, 12, 2
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie wskaźnika nagromadzenia odpadów w ujęciu zmian osobistych wydatków konsumpcyjnych za pomocą modelu wektorowo-autoregresyjnego
FORECASTING OF MUNICIPAL WASTE ACCUMULATION RATE IN THE APPROACH TO CHANGES IN PERSONAL CONSUMER EXPENDITURE BY MEANS OF A VECTOR-AUTOREGRESSIVE MODEL
Autorzy:
Bień, Jurand
Bień, Beata
Krawczyk, Piotr
Powiązania:
https://bibliotekanauki.pl/chapters/33534354.pdf
Data publikacji:
2023-12-07
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
analiza szeregów czasowych
model wektorowo-autoregresyjny
prognozo-wanie
wskaźnik nagromadzenia odpadów
wydatki konsumpcyjne
consumer expenditures
forecasting
time-series analysis
vector-autoregression model
waste accumulation rate
Opis:
Prognozowanie ilości wytwarzanych odpadów komunalnych jest ważne dla planowania, eksploatacji i optymalizacji prawidłowo funkcjonującego systemu gospodarki odpadami komunalnymi. Nie jest to jednak łatwe zadanie ze względu na szereg dynamicznych zmian będących wynikiem przeobrażeń demograficznych, społecznych, ekonomicznych, czasem wręcz nieprzewidywalnych. Początkowo do prognozowania stosowano głównie konwencjonalne, opisowe modele statystyczne prognozowania wytwarzania odpadów z uwzględnieniem czynników demograficznych i społeczno-ekonomicznych. Obecnie jednak coraz częściej metody te zastępowane są przez metody oparte na uczeniu maszynowym, które to stanowi podzbiór sztucznej inteligencji. Uczenie maszynowe to nic innego jak nauczenie komputerów, jak uczyć się na danych i doskonalić w miarę zdobywania doświadczenia. W niniejszej publikacji przeanalizowano zmiany wskaźnika nagromadzenie odpadów komunalnych w jego relacji do wydatków na osobistą konsumpcję w oparciu o dane pozyskane z Banku Danych Lokalnych (BDL) prowadzonego przez Główny Urząd Statystyczny. Analiza, a następnie prognoza przeprowadzona została z wykorzystaniem modelu wektorowo-autoregresyjnego, gdzie każda ze zmiennych opisana została osobnym równaniem modelu, w którym zmiennymi niezależnymi są opóźnienia wszystkich zmiennych zależnych. Uzyskane wyniki pokazały, że taka metoda może być z powodzeniem stosowana do prognozowania wskaźnika nagromadzenia odpadów w ujęciu zmian osobistych wydatków konsumpcyjnych przy przybliżonym poziomie 2,3% błędu średniokwadratowego (RMSE).
Forecasting the amount of municipal waste generated is important for the planning, operation and optimization of a properly functioning municipal waste management system. However, it is not an easy task due to a number of dynamic changes resulting from demographic, social and economic transformations, some of them unpredictable. Initially, mainly conventional, descriptive statistical models of forecasting waste generation, taking into account demographic and socio-economic factors, were used for prognosis. Currently more and more often these methods are replaced by methods based on machine learning, which is a subset of artificial intelligence. Machine learning teaches computers to learn from data and improve the model as they gain experience. The chapter analyses the changes in the municipal waste accumulation ratio in relation to expenditure on personal consumption based on data obtained from the Local Data Bank (LDB) run by the Polish Central Statistical Office. The analysis, and then the forecasting, was carried out with the use of a vector-autoregressive model, where each variable was described with a separate model equation, in which the independent variables are the delays of all dependent variables. The results showed that such a method can be successfully used to forecast the waste accumulation rate in terms of changes in personal consumption expenditure at an approximate level of 2.3% mean square error (RMSE).
Źródło:
Czysta energia i środowisko; 95-107
9788371939044
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies