Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kohonen maps" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Zastosowanie sieci Kohonena i wykresu rozrzutu do identyfikacji grup miodów według ich cech elektrycznych
Application of Kohonen map and a scatter diagram for identification of honey groups according to their electric features
Autorzy:
Łuczycka, D.
Pruski, K.
Powiązania:
https://bibliotekanauki.pl/articles/291382.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
miód
właściwości elektryczne
sztuczna sieć neuronowa
sieci Kohonena
honey
electric properties
artificial neuron networks
Kohonen maps
Opis:
Celem pracy jest wykonanie analiz symulacyjnych bazujących na sieci Kohonena i skalowaniu wielowymiarowym, oraz możliwość zastosowania tych technik do identyfikacji grup miodów odmianowych pod względem cech elektrycznych. Przebadano przenikalność elektryczną, współczynnik strat dielektrycznych oraz przewodność szesnastu gatunków miodów (spadziowe i nektarowe). W wyniku przeprowadzonych analiz stwierdzono, że sieci Kohonena oraz skalowanie wielowymiarowe są dobrymi narzędziami do określania liczności i składu gatunkowego grup miodów odmianowych. Właściwą architekturą sieci Kohonena tworzącą poprawną mapę topologiczną, dla analizowanych cech miodu, jest mapa zbudowana z 9 neuronów wyjściowych o wymiarach 3x3.
The purpose of the work is to carry out simulation analysis which are based on Kohonen map and multidimensional scaling and the possibility of application of these technologies for identification of cultivar honey groups in relation to their electric properties. Electric conductivity, coefficient of dielectric losses and conductivity of 16 cultivars of honey (honeydew and nectar honey) were researched. As a result of the analysis which was carried out, it was determined that Kohonen map and multidimensional scaling are good devices for determining the number and species composition of cultivar honey groups. A map formed of 9 output neurons of 3x3 dimensions is the proper architecture of Kohonen map which forms a correct topology map for the analysed properties of honey.
Źródło:
Inżynieria Rolnicza; 2012, R. 16, nr 2, t. 2, 2, t. 2; 169-175
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza typologiczna wypadków drogowych z wykorzystaniem sztucznej sieci neuronowej Kohonena
Typological analysis of road crashes using the Kohonen artificial neural network
Autorzy:
Nowakowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/144772.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
wypadki drogowe
cechy drogi
cechy zagrożenia
grupowanie pojęciowe
mapy Kohonena
profilowanie wypadków drogowych
traffic accidents
road characteristics
threat features
conceptual grouping
Kohonen maps
road accident profiling
Opis:
W artykule zaprezentowano wyodrębnienie wzorców wypadków drogowych na podstawie cech drogi i jej otoczenia w miejscu zdarzenia oraz cech zagrożenia wyrażonych przez zachowanie sprawcy, rodzaj zdarzenia oraz status wypadku. Analizowane dane poddano wielowymiarowej segmentacji wykorzystując metodę silnie skorelowaną z techniką komputerową jaką jest sztuczna sieć neuronowa bez nauczyciela - mapa Kohonena w wersji uczenia sekwencyjnego. Analiza typologiczna wypadków z udziałem jednego pojazdu wskazuje na istnienie wyraźnie wyodrębnionych wzorców wypadkowych. Najważniejszym atrybutem mającym znaczenie w procesie wyodrębniania tych wzorców jest status wypadku (cecha zagrożenia).
The objective of the paper is the identification of accident patterns. The patterns are defined on the basis of both road characteristics in the accident location and traffic safety threat features that describe the roadway hazard, i.e. driver's behaviour, accident type, and accident severity. The analysed data were subject to multivariate segmentation by means of a method that is strongly connected with computer techniques, This is unsupervised artificial neural network - the Kohonen map in the version of sequential learning. The single-vehicle road accident typology analysis made it possible to identify distinct accident patterns. The analysis indicates that accident severity plays the most important role in the road accident profiling tasks.
Źródło:
Drogownictwo; 2012, 10; 333-339
0012-6357
Pojawia się w:
Drogownictwo
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies