Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hidden Markov Models" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Wykorzystanie metod optymalizacyjnych do budowania ukrytych modeli Markowa w analizie danych z mikromacierzy DNA
Application of optimization methods for hidden Markov models in analysis of DNA microarrays data
Autorzy:
Walawender, P.
Ćmielowski, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/261582.pdf
Data publikacji:
2009
Wydawca:
Politechnika Wrocławska. Wydział Podstawowych Problemów Techniki. Katedra Inżynierii Biomedycznej
Tematy:
mikromacierze DNA
ukryte modele Markova
optymalizacja
DNA microarrays
hidden Markov models
optimization
Opis:
Techniki mikromacierzy DNA umożliwiły pomiar ekspresji genów i obserwowanie zależności między tkankami z różnych próbek. W artykule omówiono zastosowanie algorytmów opartych na ukrytych modelach Markowa (ang. Hidden Markov Models) do analizy danych z mikromacierzy DNA. Zaprezentowane podejście porównano z innymi, opisanymi w podobnych opracowaniach. Zaproponowane algorytmy składają się z dwóch części: odkrywczej i klasyfikacyjnej. Za pomocą zbioru danych treningowych stworzono uniwersalny klasyfikator, którego efektywność i inne parametry będą mierzone za pomocą danych testowych.
DNA microarray technologies make possible measurement of genes expression and observation the differences between various tissue samples. The application of hidden Markov models for analyzing DNA microarrays gene expression data, will be reported. A new approach will be compared with similar approaches used in other publications. The proposed algorithms will be composed of two parts: discovery and classification. By means of training data an universal classifier will be created, which efficiency as well as other parameters will be measured by testing data.
Źródło:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna; 2009, 15, 1; 11-13
1234-5563
Pojawia się w:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza popytu w przemyśle hutniczym - zastosowanie modelu ze zmiennymi ukrytymi
Analysis of demand in steel and iron industry – latent variables model
Autorzy:
Barska, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/1046654.pdf
Data publikacji:
2019-04-30
Wydawca:
Główny Urząd Statystyczny
Tematy:
prognozowanie
popyt
zmienne ukryte
modele ukrytych łańcuchów markowa
forecasting
demand
latent variables
hidden markov models
Opis:
Na popyt w przemyśle hutniczym wpływa wiele czynników. Nie wszystkie można zidentyfikować i zmierzyć. W artykule przedstawiono wyniki analizy popytu dla wybranego przedsiębiorstwa w latach 2010–2014. Celem przedstawionego badania jest budowa ukrytego modelu łańcuchów Markowa, który odzwierciedli punkty zwrotne zapotrzebowania na wyroby hutnicze oraz umożliwi prognozę wielkości tego zapotrzebowania. Zbadano własności prognostyczne i stabilność modelu. Przeprowadzono symulację polegającą na wygenerowaniu dużej liczby szeregów dla zadanych parametrów modelu i sprawdzeniu ich własności. Najlepiej dopasowanym modelem okazał się trójstanowy model ukrytych łańcuchów Markowa. Za jego pomocą opisano stany potencjalnie kształtujące wielkość popytu. Uwzględnienie stanu przejściowego pozwoliło uchwycić sygnał nadchodzącej zmiany pomiędzy fazami wzrostu i spadku. Zaproponowany model ukrytych łańcuchów Markowa drugiego rzędu może być alternatywą dla tradycyjnych metod analizy szeregów czasowych. Wyznaczona prognoza informuje o kształtowaniu się trendu i stanowi wskazówkę co do punktów zwrotnych koniunktury.
Demand in the steel and iron industry is influenced by multiple factors. Not all of them can be identified and measured. The paper presents the results of the analysis of the levels of demand achieved by a selected enterprise from this sector in the years 2010-2014. The aim of the study is to build a hidden Markov model which would reflect the turning points of this demand, thus making it possible to forecast its future levels. The model's forecasting properties and stability have been examined. A simulation has been carried out that involved generating a high number of series for selected model parameters and checking their properties. This demonstrated that a three-state second order hidden Markov model was most relevant to the purpose of the study. Thanks to the model's application, it was possible to describe states which could potentially shape the demand. Moreover, taking the transition state into consideration allowed spotting the signal about the upcoming replacement of the growth phase with the decline phase, and vice versa. The presented second order hidden Markov model can serve as an alternative to the traditional methods of the analysis of time series. The forecast generated by the model informs about the shaping of a trend in demand and serves as an indication of the shifts in economic cycles.
Źródło:
Przegląd Statystyczny; 2019, 66, 4; 247-269
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid of neural networks and hidden Markov models as a modern approach to speech recognition systems
Hybryda sieci neuronowych i ukrytych modeli Markowa jako nowoczesne podejście do rozpoznawania mowy
Autorzy:
Sokólski, P.
Rutkowski, T.
Powiązania:
https://bibliotekanauki.pl/articles/276753.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
sztuczne sieci neuronowe
ukryte modele Markowa
MFCC
sterowanie
artificial neural networks
hidden Markov models
speech recognition
control
Opis:
The aim of this paper is to present a hybrid algorithm that combines the advantages of artificial neural networks and hidden Markov models in speech recognition for control purposes. The scope of the paper includes review of currently used solutions, description and analysis of implementation of selected artificial neural network (NN) structures and hidden Markov models (HMM). The main part of the paper consists of a description of development and implementation of a hybrid algorithm of speech recognition using NN and HMM and presentation of verification of correctness results.
Celem artykułu jest przedstawienie algorytmów hybrydowych łączących zalety sztucznych sieci neuronowych i ukrytych modeli Markowa w zastosowaniach rozpoznawania mowy dla potrzeb sterowania. W zakres opracowania wchodzi przegląd stosowanych obecnie rozwiązań, opis i analiza implementacji wybranych struktur sieci neuronowych (NN) oraz ukrytych modeli Markowa (HMM). Główną część artykułu stanowi opis opracowywania hybrydowego algorytmu rozpoznawania mowy wykorzystującego NN i HMM oraz prezentacja wyników weryfikacji poprawności działania.
Źródło:
Pomiary Automatyka Robotyka; 2013, 17, 2; 449-455
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie metody niejawnych modeli Markowa w automatycznej detekcji wybranych wad wymowy
Application Hidden Markov Models to Automatic Detection of Speech Disorder
Autorzy:
Wielgat, R.
Zieliński, T.
Świętojański, P.
Żołądź, P.
Woźniak, T.
Grabias, S.
Król, D.
Powiązania:
https://bibliotekanauki.pl/articles/152366.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
współczynniki HFCC
współczynniki MFCC
niejawne modele Markowa
terapia logopedyczna
human factor cepstral coefficients
Mel-frequency cepstral coefficients
hidden markov models
logopedic therapy
Opis:
W artykule przedstawiono wyniki badań dotyczących automatycznej detekcji wad wymowy u dzieci. Jako materiał badawczy zostały wykorzystane nagrania pochodzące od dzieci z wadami wymowy. Zadanie polegało na rozpoznaniu nieprawidłowo realizowanego fonemu w wybranych słowach testowych. Detekcja była dokonywana za pomocą metod rozpoznawania mowy, w których jako cec sygnału mowy użyto dwóch najbardziej obiecujących rodzajów cech: współczynnika MFCC praz współczynników HFCC. Jako klasyfikatora użyto metody niejawnych modeli Markowa (HMM), gdzie modelowanymi jednostkami fonetycznimi były zarówno fonemy jak i całe słowa. W badanych metodach dobrano ich parametry w celu zmaksymalizowania skuteczności rozpoznawania. W artykule zaprezentowano również analizę porównawczą wyników rozpoznawania otrzymanych z wykorzystaniem metody HMM oraz testowanej w poprzednich pracach metody nieliniowej transformacji czasowej (DTW).
The results of research on automatic detection of the pathological phoneme pronunciation are presented in the paper. Speech samples came from speech impaired children and persons who imitated pathological phoneme pronunciation. The recognition task was to find wrongly realized phoneme in the selected test utterances. At the reature extraction stage the most effective features` types have been used: standard Mel-Frequency Cepstral Coefficients (MFCC) and recently proposed Human Factor Cepstral Coefficients (HFCC). As a classificator hidden Markov models, with modeled speech unit being a phoneme as well as a whole word, have been used. The parameters of the HMMs were adjusted in order to achieve the best recognition accuracy. Comparision of the HMM and DTW methods is also presented in the paper.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 9 bis, 9 bis; 417-420
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ukryte modele Markowa w analizie wyników testu koniunktury gospodarczej
Hidden Markov Models in Analysis of Results of Business Tendency Surveys
Autorzy:
Bernardelli, Michał
Dędys, Monika
Powiązania:
https://bibliotekanauki.pl/articles/500689.pdf
Data publikacji:
2012
Wydawca:
Szkoła Główna Handlowa w Warszawie
Tematy:
ukryte modele Markowa
algorytm Viterbiego
test koniunktury
punkty zwrotne cyklu koniunkturalnego
hidden Markov models
Viterbi algorithm
business tendency surveys
business cycle turning points
Opis:
W pracy zbadana została możliwość wykorzystania algorytmu Viterbiego do analizy sald odpowiedzi respondentów na pytania testu koniunktury w przemyśle, prowadzonego przez Instytut Rozwoju Gospodarczego Szkoły Głównej Handlowej w Warszawie. W badaniu rozważane były pytania dotyczące oceny stanu obecnego. Do analizy wykorzystane zostały ukryte modele Markowa z warunkowymi rozkładami normalnymi. Pod uwagę brane były modele, w których łańcuchy Markowa mają dwuelementową i trójelementową przestrzeń stanów. Uzyskane wyniki zostały skonfrontowane z pochodzącymi z różnych źródeł datowaniami punktów zwrotnych cyklu koniunkturalnego. Badane modele zostały porównane pod względem skuteczności w wychwytywaniu sygnałów o nadchodzących zmianach w koniunkturze. Przeprowadzone analizy przemawiają za stosowaniem modeli z trzystanowymi łańcuchami Markowa. Wyniki badania sugerują ponadto, iż należy brać pod uwagę opóźnienia między odpowiedziami respondentów a zmianami klimatu koniunktury.
The paper considers the possibility of using the Viterbi algorithm to analyse results of the RIED WSE business surveys in the manufacturing industry.The analysis was focused on the state balances. The hidden Markov models with conditional normal distributions were applied. There were considered models with two-state and three-state Markov chains. The results were compared with the timing of turning points taken from other sources. The tested models were compared in terms of effectiveness in detecting of coming changes in economic conditions. The analysis suggests models with three-state Markov chains be used. The results also suggest that it is necessary to take into account a delay between the opinions of survey respondents and changes in economic climate.
Źródło:
Prace i Materiały Instytutu Rozwoju Gospodarczego SGH; 2012, 90: Badania koniunktury - zwierciadło gospodarki. Część I; 159-181
0866-9503
Pojawia się w:
Prace i Materiały Instytutu Rozwoju Gospodarczego SGH
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies