Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bayesian prediction" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Wykorzystanie sieci bayesowskich do prognozowania bankructwa firm
Bankruptcy prediction with Bayesian networks
Autorzy:
Gąska, Damian
Powiązania:
https://bibliotekanauki.pl/articles/434020.pdf
Data publikacji:
2016
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
bankruptcy prediction
Bayesian network
structure learning
Opis:
The aim of the paper is to compare accuracy of some bankruptcy prediction models based on Bayesian networks. Some network structure learning algorithms were analyzed as a tool for classifiers construction. Empirical analysis was applied to companies listed on Warsaw Stock Exchange. The paper gives short overview of theoretical background behind discussed issues and presents results of empirical analysis.
Źródło:
Śląski Przegląd Statystyczny; 2016, 14 (20); 131-144
1644-6739
Pojawia się w:
Śląski Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Probabilistyczne modele zjawisk przestrzennych w rolnictwie
Probabilistic models of spatial phenomena in agriculture
Autorzy:
Marciniak, A.
Powiązania:
https://bibliotekanauki.pl/articles/291394.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
system informacji przestrzennej
GIS
probabilistyczna predykcja
probabilistyczna interpolacja
obiekt przestrzenny
sieci bayesowskie
probabilistic prediction
approximation prediction
spatial objects
Bayesian networks
Opis:
Niepewność, zarówno stochastyczna jak i epistemiczna, obecna w modelach zjawisk czaso-przestrzennych w rolnictwie uzasadnia zastosowanie metod probabilistycznych predykcji, wyjaśnianiu i aproksymacji obiektów przestrzennych. Z metodologicznego, obliczeniowego i inferencyjnego punktu widzenia odpowiednią technologią modelowania są tu sieci bayesowskie traktowane jako systemy reprezentacji wiedzy. W takim ujęciu modelowanie sprowadza się do translacji wiedzy z języka naturalnego na formalny i wykonywalny język sieci bayerowskich. Logiczną spójność i efektywność takiego rozumienia procesu modelowania pokazano na przykładzie budowy modelu aproksymacji i predykcji plonu pszenicy.
Uncertainty, both stochastic and epistemic, occurring in models of space-time phenomena in agriculture justifies application of probabilistic methods in predication, clarifying and approximation of spatial objects. From methodological, computational and inferential point of view, in this case proper modelling technologies include Bayesian networks treated as knowledge representation systems. From this perspective modelling comes down to translation of knowledge from natural language to formal and executable language of Bayesian networks. Logical coherence and effectiveness of this definition of modelling process is shown on the example of building a model of wheat crop approximation and prediction.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 5, 5; 193-199
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies