Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "3D segmentation" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Segmentacja trójwymiarowych obrazów ToF-SWI RM naczyń krwionosnych mózgu z wykorzystaniem filtracji wieloskalowej
Segmentation of 3D ToF-SWI brain vessels images by means of multiscale filtering
Autorzy:
Strzelecki, M.
Materka, A.
Kociński, M.
Sankowski, A.
Dwojakowski, G.
Deistung, A.
Reinchenbach, J.
Powiązania:
https://bibliotekanauki.pl/articles/261987.pdf
Data publikacji:
2010
Wydawca:
Politechnika Wrocławska. Wydział Podstawowych Problemów Techniki. Katedra Inżynierii Biomedycznej
Tematy:
segmentacja obrazów 3D
filtracja wieloskalowa
morfologia matematyczna
obrazy 3D ToF-SWI MR układu krwionośnego mózgu
3D image segmentation
muitiscale filtering
mathematical morphology
3D T o F - S W I MR images of brain vaculature
Opis:
W pracy przedstawiono wyniki bada ń dotyczących trójwymiarowych metod analizy obrazów 3D rezonansu magnetycznego naczyń krwionośnych mózgu. Scharakteryzowano sekwencje sygnałów skanera MM (rezonansu magnetycznego) wykorzystywane do uzyskania obrazów angiograficznych mózgu. Przedstawiono również wyniki segmentacji drzewa naczyń z wykorzystaniem filtracji wieloskalowej oraz elementów morfologii matematycznej. Przedstawiono kierunki przyszłych badań prowadzących do opracowania połączenia między analizą makro- i mikronaczyń, celem uzyskania dokładniejszych modeli układu krwionośnego.
The paper presents the analysis c f 3 0 ToF-SWI magnetic resonance images of brain vessels. T h e MR (magnetic resonance) sequences of ToF (Time of Flight) and SWI (Susceptibility Weighted Imaging) used for acquisition of vasculature images, were characterized. The segmentation results of vessel images, based on muitiscale filtering and mathematical morphology methods, were presented and discussed. Finally, more precise and accurate brain vasculature model, was introduced.
Źródło:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna; 2010, 16, 4; 367-371
1234-5563
Pojawia się w:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Segmentacja danych otrzymanych z lasera 3D
3D laser data segmentation
Autorzy:
Siemiątkowska, B.,
Szklarski, J.
Gnatowski, M.
Zychewicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/157394.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
segmentacja
mapy 3D
3D mapping
segmentation
Opis:
Otoczenie robota - wnętrze budynku jak i obszar znajdujący się na zewnątrz może być podzielony na fragmenty, którym następnie możemy przypisać pewne znaczenie semantyczne. Przed przystąpieniem do dokonywania klasyfikacji należy jednak dokonać filtracji i segmentacji danych pomiarowych. W poniższym artykule przedstawione zostaną wyniki segmentacji chmury punktów, którą otrzymujemy na podstawie wskazań laserowego skanera 3D. Zastosowano nowatorską technikę, w której dane pomiarowe zamieniane są na postać kartezjańską, następnie obliczane są wektory normalne do powierzchni, na której punkty leżą. Składowe wektora są normalizowane i zapisywane w reprezentacji RGB. W wyniku opisanej transformacji powstaje kolorowy obraz. Dzięki temu problem segmentacji danych w przestrzeni 3D jest sprowadzony do zadania analizy kolorowych obrazów. Umożliwia to zastosowanie znanych z wizji algorytmów: usuwania szumów, rozrostu ziarna i segmentacji. Przeprowadzone eksperymenty w pomieszczeniu zamkniętym i na zewnątrz budynku potwierdziły efektywność przyjętej metody.
Map building of unknown environment is a part of a navigation system and is one of the most important topics in modern mobile robotics. Many environment representations have been proposed. One of the most popular is 2D representation which has many limitations, for example the height of obstacles is not taken into account. In the last decade 3D sensors are being more popular which enable 3D map building. In our approach the laser scans a scene and gives 2D data. The rotating support rotates the laser vertically, which allows to make 3D scans. The cloud of points is transformed into a set of normal vectors. The coordinates of a vector are represented as: red, green and blue colors. And 3D information is represented as 2D color image. The segmentation of the RGB image is performed using classical image processing methods. 2D areas are transformed into a 3D representation and classified. Experimental results validated the proposed approach and showed the benefits of using classical method of image processing for 3D data segmentation.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 3, 3; 275-278
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie algorytmów RANSAC oraz rosnących płaszczyzn w procesie segmentacji danych lotniczego skaningu laserowego
Comparison of RANSAC and plane growing algorithms for airborne laser scanning data segmentation
Autorzy:
Jarząbek-Rychard, M.
Borkowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/130203.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
segmentacja
skaning laserowy
chmura punktów
RANSAC
rosnące płaszczyzny
modelowanie 3D
segmentation
laser scanning
point cloud
3D modeling
Opis:
W ostatnich latach, wraz z osiągnięciem zdolności operacyjnej i wzrostem dostępności lotniczego skanowania laserowego (LIDAR) nastąpiło również zwiększenie zainteresowania opracowaniami 3D tworzonymi na podstawie danych pozyskanych z wykorzystaniem tej techniki. Jednym z centralnych zagadnień modelowania geoinformacji na podstawie danych LIDAR jest modelowanie zabudowy. W modelowaniu tym główny nacisk kładzie się na automatyzację procesów. Dostępne oprogramowanie komercyjne charakteryzuje się bowiem znacznym poziomem interaktywności – tworzenie modelu wymaga dużego udziału operatora. W procesie trójwymiarowego modelowania zabudowy wyróżnia się na ogół cztery podstawowe etapy, przy czym kluczowym wydaje się etap polegający na segmentacji punktów należących do budynku. W procesie tym ze zbioru zawierającego zarówno punkty obarczone błędami przypadkowymi jak i grubymi wyodrębniane zostają podzbiory punktów reprezentujących (modelujących) poszczególne płaszczyzny. Wynika to z faktu, iż budynki formowane są najczęściej jako kombinacja płaszczyzn w przestrzeni 3D. W pracy przedstawiono analizę dwóch, najczęściej wykorzystywanych w celu segmentacji algorytmów: RANSAC i rosnących płaszczyzn, przy czym w tym ostatnim, wprowadzono modyfikacje, uwzględniające topologię w zbiorze danych. Podano podstawowe informacje dotyczące omawianych metod. Testy numeryczne wykonano z wykorzystaniem zarówno syntetycznych jak i rzeczywistych danych skaningu laserowego. W wyniku przeprowadzonych eksperymentów można stwierdzić, że algorytm RANSAC charakteryzuje się krótkim czasem wykonania segmentacji dla nieskomplikowanych modeli. Potrafi jednak łączyć ze sobą odrębne w rzeczywistości obiekty leżące w tej samej płaszczyźnie; dobrze nadaje się do segmentacji standardowych dachów, złożonych z małej liczby elementów. Algorytm rosnących płaszczyzn jest bardziej odpowiedni dla modeli o większym stopniu skomplikowania. Poprawnie rozdziela odrębne obiekty leżące w tej samej płaszczyźnie. Czas wykonania zależy głównie od liczby punktów w zbiorze – nie zależy od liczby wyodrębnianych płaszczyzn.
In recent years, the LIDAR technique has undergone fast development. The increasing access and operating ability caused a growing interest in 3D processing of data acquired by LIDAR. One of the main tasks of geo-information modeling is to create virtual city models. As the available commercial softwares require a high level of user interactivity, the crucial issue of modeling is its automation. There are four main steps that comprise virtual building extraction. One of them, building point cloud segmentation, appears to be the core part of the whole modeling process. Segmentation allows partitioning of a data set, that contains points biased by random and gross errors, into smaller sets which represent different planes. This arises from the fact, that buildings are formed by a combination of planes in 3D space. The paper presents an analysis of two algorithms that are most commonly applied to segmentation: RANSAC and plane growing. The latter is modified, taking into consideration topology between points. The essential information about both algorithms is presented. Numerical tests based on synthetic and real laser scanning data are executed. It is inferred from the experiments that the RANSAC algorithm features short time performance for simple models. However, at times it merges different objects lying in the same plane. The algorithm is suited well for segmentation of standard roofs that contain small number of elements. The plane growing algorithm is more suitable for more complicated models. It separates different objects situated in the same plane. Time performance depends mostly on the number of points within a data set; it is not affected by the number of identified planes.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2010, 21; 119-129
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies