Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Such, Piotr" wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Magazynowanie wodoru w obiektach geologicznych
Storage of hydrogen in geological structures
Autorzy:
Such, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/1833953.pdf
Data publikacji:
2020
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
wodór
podziemne magazynowanie
wyeksploatowane złoża gazu
kawerny solne
hydrogen
underground storage
exploited gas reservoirs
salt caverns
Opis:
Hydrogen economy became one of the main directions in EU’s Green Deal for making Europe climate neutral in 2050. Hydrogen will be produced with the use of renewable energy sources or it will be obtained from coking plants and chemical companies. It will be applied as ecological fuel for cars and as a mix with methane in gas distribution networks. Works connected with all aspects of hydrogen infrastructure are conducted in Poland. The key problem in creating a hydrogen system is hydrogen storage. They ought to be underground (RES) because of their potential volume. Three types of underground storages are taken into account. There are salt caverns, exploited gas reservoirs and aquifers. Salt caverns were built in Poland and now they are fully operational methane storages. Oli and Gas Institute – National Research Institute has been collaborating with the Polish Oil and Gas Company since 1998. Salt cavern storage exists and is used as methane storages. Now it is possible to use them as methane-hydrogen mixtures storages with full control of all operational parameters (appropriate algorithms are established). Extensive study works were carried out in relation to depleted gas reservoirs/aquifers: from laboratory investigations to numerical modelling. The consortium with Silesian University of Technology was created, capable of carrying out all possible projects in this field. The consortium is already able to undertake the project of adapting the depleted field to a methane-hydrogen storage or, depending on the needs, to a hydrogen storage. All types of investigations of reservoir rocks and reservoir fluids will be taken into consideration.
Źródło:
Nafta-Gaz; 2020, 76, 11; 794--798
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sekwestracja $CO_2$ w Polsce nie ma sensu?!
$CO_2$ sequestration in Poland does not make sense?!
Autorzy:
Such, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/1833986.pdf
Data publikacji:
2020
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
sekwestracja
emisja CO2
koszty
horyzont czasowy
sequestration
emission of CO2
costs
time horizon
Opis:
The main goal of European Green Deal is for all EU member states to become climate-neutral by 2050. One option is CO2 sequestration. It means underground CO2 storage in geological structures. Theoretically, such sequestration could lower CO2 emissions by about 20%. This process has also, however, a number of disadvantages, such as high costs and restricted volume of appropriate geological objects. Sequestration processes can be divided into three groups: sequestration in depleted hydrocarbon deposits, sequestration in aquifers and sequestration coupled with EOR and geothermal energy capture. To sequestrate a significant part of emitted CO2, it is necessary to separate CO2 in power plants, to adapt appropriate geological objects, to investigate such objects and to build infrastructure and pipelines. What elements affect the cost of sequestration? First of all, separation of CO2 requiring large amount of energy (about 10% of energy produced in power plant). Next, gas must be compressed and rendered to supercritical/liquid phase. In the case of depleted hydrocarbon reservoirs, we know that the structure is tight and there is an infrastructure on the surface. When it comes to aquifers, it is necessary to carry out a full set of investigations, drill holes and build an infrastructure. If Poland wants to fulfill all tasks of Green Deal, huge investments are needed. The cost analysis should take into account such elements as the length of pipelines to be constructed and existing power grids. Any probable sequestration must be correlated with hydrogen projects. RES cannot work alone because they are not able to provide a constant supply of energy. It can be achieved with energy mix. Such a mix should be based on nuclear plants built in place of the greatest coal plants, which will make it possible to use the existing power grids. RES coupled with hydrogen economy should result in the second largest contribution to energy mix. All coal power plants must be modernized. Hybridization must be taken into account here (biomass or steam and gas power plants). This should reduce their emissions by about 30–40%. The share of sequestration will be very small and associated with geothermal energy.
Źródło:
Nafta-Gaz; 2020, 76, 12; 913--918
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dekarbonizacja Europy a hydraty metanu
Decarbonization of Europe and methane hydrates
Autorzy:
Such, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/1834057.pdf
Data publikacji:
2020
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
dekarbonizacja
hydraty metanu
globalne ocieplenie
Golfstrom
decarbonization
methane hydrates
global warming
Gulf Stream
Opis:
The European Union accepted the ambitious project of decarbonization of economy. The main goal is a 90 percent reduction of CO2 emissions in comparison with 1990 emissions, which will result in the so-called climatic neutrality. In this project, several goals are obvious and not subject to discussion. But there are several conditions, previously not discussed, which could bring this program into question. This paper concentrates on the problem of methane hydrates. Methane hydrate reservoirs mainly occupied the bottom of the oceans and the volume of methane in these reservoirs is greater than the volume of hydrocarbons in all other reservoirs. Currently, three different theories about hydrates coexist: the methane hydrates is a huge energy source and a new golden age is coming; the methane hydrates are a time bomb – global warming causes dissociation of these reservoirs and a global warming catastrophe; the ocean is warming so slowly that we have several hundreds of years until eventual dissociation of methane hydrate reservoirs. Essentially, the third approach could be applied if it was not for Gulf Stream. This ocean current brings a great amount of heat to the Arctic region. It is an additional factor of global warming. Therefore, three effects are possible for the ocean areas through which Gulf Stream flows. There is methane hydrates reservoirs dissociation causing methane migration into the atmosphere, sediment landslides on shelf slopes and the associated potential tsunami, and change of thermobaric conditions connected with vanished ice sheet. The free methane cumulated under methane hydrate deposits will also migrate into the atmosphere. Appropriate models for simulation of all these possibilities do exist, however we do not have sufficient data. Thus, creation of a reliable data base is the first goal. Maps of extents of hydrate reservoirs, depth of reservoirs and results of several years of examinations of surface and bottom temperatures must be gathered in this database. This will allow us to investigate all possible scenarios.
Źródło:
Nafta-Gaz; 2020, 76, 10; 696-700
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Petrofizyczne aspekty poszukiwań naftowych na dużych głębokościach
Petrophysical aspects of hydrocarbon prospecting and exploitation in deeper targets
Autorzy:
Such, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/1834095.pdf
Data publikacji:
2020
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
duże głębokości
analiza ekonomiczna
warunki złożowe
bazy danych
deeper targets
economical analysis
reservoir conditions
data base
Opis:
We are entering the second stage of prospecting hydrocarbons in Poland. The potential volume of gas in various types of unconventional reservoirs is huge. Deep lying sediments in the Carpathians and in the Polish Lowland (the Rotliegend Basin and the Devonian) are prospective gas basins, but it is possible to find them deeper than 3000 m. Additionally, in contrast with shale gas, other types of unconventional reservoirs provide a big chance for profitable exploitation, however it requires application of complex, modern methods of investigation and very careful calculation of all prices connected with facilities of such types of reservoirs. Deeper targets means great drilling costs. Unconventional type means that compressibility of rocks and reservoir fluids, as well as high temperatures and pressures, must be taken into account. These two factors result in the main problem being economical profitability. Real economical analysis is possible after creating a numerical reservoir model with evaluation of the volume of hydrocarbons, the number of necessary wells and the potential production rate. The numerical model requires well logs and laboratory analyses. A part of laboratory analyses must be performed in simulated reservoir conditions. These analyses are expensive and time consuming. So, is it possible to reduce the costs and the time of model creation? For example, is it possible to create a full numerical model on the basis of the first well. Yes, if we have an appropriate data base (date base from the sedimentary basin in which we found a reservoir with a statistically correct number of core analyses performed in simulated reservoir conditions). In such a situation we can apply artificial intelligence methods and rock typing methods and evaluate petrophysical parameters for the whole reservoir. To sum up, the key to proper evaluation and exploitation scheduling will be the analyses performed in simulated reservoir conditions and big data.
Źródło:
Nafta-Gaz; 2020, 76, 8; 502-506
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies