- Tytuł:
-
Wykorzystanie perceptronu wielowarstwowego do wyszczególniania obiektów o znaczeniu orientacyjnym na mapach topograficznych
The use of a multilayer perceptron for specifying the landmarks on topographic maps - Autorzy:
- Pokonieczny, K.
- Powiązania:
- https://bibliotekanauki.pl/articles/345795.pdf
- Data publikacji:
- 2016
- Wydawca:
- Polskie Towarzystwo Informacji Przestrzennej
- Tematy:
-
sztuczne sieci neuronowe
obiekty orientacyjne
klasyfikacja obiektów przestrzennych
artificial neural networks
landmarks
spatial data classification - Opis:
-
W artykule została poruszona problematyka wyboru obiektów o znaczeniu orientacyjnym tj. trwałych obiektów i przedmiotów sytuacyjnych, które łatwo rozpoznać w terenie i według których dokładnie i szybko można określić swoje położenie. Do ich wyszczególniania, wykorzystano sztuczne sieci neuronowe (a konkretnie perceptron wielowarstwowy). W artykule opisano zarówno sposób doboru najwłaściwszej architektury sieci neuronowej, jak i wprowadzane do niej dane wejściowe (parametry opisujące obiekt oraz jego otoczenie). Testy przeprowadzono dla obszaru 4 arkuszy Wojskowej Mapy Topograficznej w skali 1:50 000. Przeanalizowano 4 klasy obiektów (komin, krzyż przydrożny, pomnik i punkt wysokościowy). W celu wyboru odpowiedniej architektury sieci, wykonano sprawdzenie krzyżowe, polegające na podziale próby uczącej na 3 części (uczącą, testową i walidacyjną). Pozwoliło to na wybór 10 najlepszych sieci, które zostały połączone w zespół sztucznych sieci neuronowych. Ponadto przeprowadzono globalną analizę wrażliwości, co pomogło określić, które zmienne mają największy wpływ na możliwość zakwalifikowania obiektu do grupy obiektów orientacyjnych. Wdrożenie sieci wykonano na bazie zbioru danych testowych znajdujących się na obszarze sąsiedniego arkusza mapy. Wyniki wskazują, że przygotowana sieć neuronowa we właściwy sposób potrafiła wyszczególnić obiekt o znaczeniu orientacyjnym. Najwyższy współczynnik nadawany był wysokim, odosobnionym obiektom, co było zgodne ze sposobem nauczania sieci neuronowej. Zastosowanie ciągłej funkcji aktywacji pozwoliło na wyznaczenie współczynnika w ciągłym przedziale od 0 do 1. W zaprezentowanych w artykule przykładach wykorzystane zostały dane przestrzenne pochodzące z Vector Map Level 2 i mapy w skali 1 : 50 000.
The presented article concerns the issue of landmarks selection i.e. solid objects and situational items that may be easily identified in the field. To specify them the artificial neural networks (a multi-layer perceptron) have been used. The article describes both, how to select the most appropriate neural network architecture and input data (attribute and spatial) which are entered to the network. The tests have been performed for the area of 4 sheets of the Military Topographic Map at 1:50 000 scale. 4 classes of objects have been analyzed (a chimney, a wayside cross, a monument and an elevation spot). To select the appropriate network architecture the cross-validation has been performed. The learning sample has been divided into 3 parts (one learning, one testing and one validation sample). This allowed to select the top 10 networks. In addition a global sensitivity analysis was conducted, which helped to determine variables with the greatest impact on the results. Implementation of the network was made based on a test data set, located in the area of the adjacent map sheets. The results showed that the neural network was able to correctly specify a landmark. The highest index was assigned to high, isolated objects, which was in line with the way of teaching the neural network. The usage of a continuous activation function allowed to determine the index in the continuous range 0 to 1. The spatial data from the Vector Map Level 2 and the Military Topographic Map at 1:50 000 scale have been used for studies described in this article. - Źródło:
-
Roczniki Geomatyki; 2016, 14, 3(73); 397-405
1731-5522
2449-8963 - Pojawia się w:
- Roczniki Geomatyki
- Dostawca treści:
- Biblioteka Nauki