Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mathematical proof" wg kryterium: Wszystkie pola


Wyświetlanie 1-7 z 7
Tytuł:
Dowód matematyczny – argumentacja czy derywacja? – część II
Mathematical Proof – Argumentation or Derivation? – Part II
Autorzy:
Wójtowicz, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/691020.pdf
Data publikacji:
2011
Wydawca:
Copernicus Center Press
Tematy:
philosophy of mathematics
mathematical proof
formal derivation
derivation-indicator view
philsophy of science
Opis:
In the first part of the paper, Azzouni’s derivation–indicator view was presented. In the second part it is analyzed in a detailed way. It is shown, that many problems arise, which cannot be explained in a satisfactory way in Azzouni’s theory, in particular the problem of the explanatory role of proof, of its epistemic role; the relationship between first–order and second–order versions of proofs is also not clear. It is concluded, that Azzouni’s theory does not provide a satisfactory account of mathematical proof, but inspires an interesting discussion. In the article, some of the mentioned problems are discussed.
Źródło:
Zagadnienia Filozoficzne w Nauce; 2011, 49; 81-97
0867-8286
2451-0602
Pojawia się w:
Zagadnienia Filozoficzne w Nauce
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dowód matematyczny – argumentacja czy derywacja? – część I
Mathematical Proof – Argumentation or Derivation? – Part I
Autorzy:
Wójtowicz, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/691022.pdf
Data publikacji:
2011
Wydawca:
Copernicus Center Press
Tematy:
philosophy of mathematics
mathematical proof
formal derivation
derivation-indicator view
philsophy of science
Opis:
The article is devoted to the problem of status of mathematical proofs, in particular it tries to capture the relationship between the real, „semantic” notion of mathematical proof, and its formal (algorithmic) counterpart. In the first part, Azzouni’s derivation–indicator view is presented in a detailed way. According to the DI view, there is a formal derivation underlying every real proof.
Źródło:
Zagadnienia Filozoficzne w Nauce; 2011, 49; 63-80
0867-8286
2451-0602
Pojawia się w:
Zagadnienia Filozoficzne w Nauce
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Powstanie i perspektywy dowodu matematycznego
The Origins and Perspectives of the Development of Mathematical Proof
Autorzy:
Mrozek, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/968446.pdf
Data publikacji:
2000-03-01
Wydawca:
Uniwersytet Warszawski. Wydział Filozofii
Opis:
This paper is an attempt to review the historically existing types of demonstration of mathematical theorems. The author shows how the notion of mathematical proof has changed through the time from the moment when mathematicians realised (thanks to the philosophical method) the necessity to justify their theses until a precise notion of proof has appeared in the framework of the formal method. Next, the author considers the possibility of modifying the notion of mathematical proof under the influence of the development of computer sciences.
Źródło:
Filozofia Nauki; 2000, 8, 1; 21-33
1230-6894
2657-5868
Pojawia się w:
Filozofia Nauki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dowód matematyczny z punktu widzenia formalizmu matematycznego. Część II
Mathematical Proof from the Formalistic Viewpoint. Part II
Autorzy:
Wójtowicz, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2013331.pdf
Data publikacji:
2007
Wydawca:
Katolicki Uniwersytet Lubelski Jana Pawła II. Towarzystwo Naukowe KUL
Tematy:
program Hilberta
platonizm Fregego
intuicja matematyczna
Hilbert’s program
Frege’s Platonism
mathematical intuition
Opis:
In the second part I discuss Frege’s and Hilbert views on the nature of mathematical proof, in particular their discussion concerning the problem of implicit definitions. I also discuss Hilbert’s program and conclude with some remarks concerning the problem of the “decline of intuition” in the formalistic conception of mathematical proof.
Źródło:
Roczniki Filozoficzne; 2007, 55, 2; 139-153
0035-7685
Pojawia się w:
Roczniki Filozoficzne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dowód matematyczny z punktu widzenia formalizmu matematycznego. Część I
Mathematical Proof from the Formalistic Viewpoint. Part I
Autorzy:
Wójtowicz, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2013332.pdf
Data publikacji:
2007
Wydawca:
Katolicki Uniwersytet Lubelski Jana Pawła II. Towarzystwo Naukowe KUL
Tematy:
Descartes
Berkeley
Peacock
Pasch
formalism
formalizm
Opis:
This article is the first one to examine the evolution of the notion of mathematical proof in a historical perspective. First I present the intuitive, approach of Descartes, according to which mathematical proof is based on self-evident principles. I follow with an analysis of Berkeley’s mathematical instrumentalism and argue that he can be considered a predecessor of modern formalism. The article also deals with the ideas of Peacock and Pasch, and their role in the development of the modern formalistic viewpoint.
Źródło:
Roczniki Filozoficzne; 2007, 55, 2; 123-138
0035-7685
Pojawia się w:
Roczniki Filozoficzne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Jak studenci matematyki oceniają poprawność dowodu matematycznego
Autorzy:
Ciosek, Marianna
Żeromska, Anna Katarzyna
Šveda, Dušan
Powiązania:
https://bibliotekanauki.pl/articles/749346.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
teachers training, mathematical proof, evaluation of proof, mathematical activity, mathematical false beliefs.
Opis:
Artykuł prezentuje wyniki badania umiejętności oceniania poprawności dowodówmatematycznych przez 74 studentów matematyki (polskich i słowackich)– przyszłych nauczycieli matematyki. Badani mieli za zadanie zapoznaćsię z dwoma autentycznymi rozumowaniami pochodzącymi od innych studentówmatematyki (S1 i S2), uznanymi przez ich autorów za dowody pewnegotwierdzenia. Obydwa rozumowania były błędne, choć każde z innego powodu.Analiza zebranego materiału badawczego była nastawiona na zidentyfikowaniei scharakteryzowanie trudności w rozumieniu dowodu matematycznego orazsymptomów rozumienia istotnych cech dowodu w matematyce. Narzędzie badawczezostało tak dobrane, by umożliwić pewien wgląd w pojmowanie przezstudentów związku między twierdzeniem a jego dowodem w matematyce.
Źródło:
Didactica Mathematicae; 2017, 39
2353-0960
Pojawia się w:
Didactica Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozumienie dowodu matematycznego a zagadnienie wyjaśnienia w matematyce
The Notion of Mathematical Proof and the Problem of Explanation in Mathematics
Autorzy:
Wójtowicz, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/690770.pdf
Data publikacji:
2015
Wydawca:
Copernicus Center Press
Tematy:
philosophy of mathematics
mathematical proof
explanation in mathematics
explanatory proofs
mathematical intuition
Opis:
In the article, I present two possible points of view concerning mathematical proofs: (a) the formal view (according to which the formalized versions of mathematical proofs reveal their “essence”); (b) the semantic view (according to which mathematical proofs are sequences of intellectual acts, and a form of intuitive “grasp” is crucial). The problem of formalizability of mathematical proofs is discussed, as well as the problem of explanation in mathematics – in particular the problem of explanatory versus non-explanatory character of mathematical proofs. I argue, that this problem can be analyzed in a fruitful way only from the semantic point of view.
Źródło:
Zagadnienia Filozoficzne w Nauce; 2015, 58; 89-114
0867-8286
2451-0602
Pojawia się w:
Zagadnienia Filozoficzne w Nauce
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies