Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "particle method" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Multi-objective optimization with adjusted PSO method on example of cutting process of hardened 18CrMo4 steel
Optymalizacja wielokryterialna skorygowaną metodą PSO na przykładzie procesu skrawania stali 18CrMo4 w stanie zahartowanym
Autorzy:
Stryczek, R.
Pytlak, B.
Powiązania:
https://bibliotekanauki.pl/articles/1366141.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
toczenie na twardo
metoda optymalizacji wielocząsteczkowej (PSO)
obliczenia ewolucyjne
optymalizacja wielokryterialna
entropia
hard turning
particle swarm optimization (PSO) method
evolutionary computations
multi-objective optimization
entropy
Opis:
W pracy zaproponowano zmodyfikowaną metodę optymalizacji wielocząsteczkowej (PSO) dla problemów optymalizacji wielokryterialnej z dyskretną przestrzenią decyzyjną. W metodzie PSO zmieniono sposób określania momentu bezwładności, współczynnika uczenia oraz współczynnika społecznego. Dodatkowo wprowadzono elitaryzm oraz innowacyjny mechanizm hamowania cząstek chroniący je przed przekraczaniem dopuszczalnych granic przestrzeni decyzyjnej. Zaproponowane podejście zostało zweryfikowane na szeregu aktualnych funkcjach testowych oraz problemie optymalizacji procesu skrawania stali 18CrMo4 w stanie zahartowanym, gdzie porównano je z wynikami uzyskanymi za pomocą algorytmów genetycznych (GA). Uzyskane wyniki wskazują, że zaproponowane podejście jest względnie szybkie i wysoce konkurencyjne w stosunku do innych metod optymalizacji. Autorzy uzyskali bardzo różnorodne, zbieżne i w pełnym zakresie przebiegi frontu Pareto w przestrzeni kryteriów. W celu oceny jakości wygenerowanego zbioru Pareto dla każdego z prezentowanych przykładów wyznaczono ocenę opartą na pomiarze entropii oraz wskaźnika jakości IGD.
In this paper a Modified Particle Swarm Optimization (PSO) method for multi-objective (MO) problems with a discrete decision space is proposed. In the PSO method the procedure to determine inertia weight, learning factor and social factor is modified. In addition, both an elitism strategy and innovative deceleration mechanism preventing the particles from going beyond the limits of decision space are introduced. The proposed approach has been applied to a series of currently used test functions as well as to optimization problems connected with finish hard turning operation, where the obtained results have been compared with those obtained by means of Genetic Algorithms (GA). The results indicate that the proposed approach is relatively quick, and thus it is highly competitive with other optimization methods. The authors have obtained a very good diversity, convergence and a maximum range of the Pareto front in the criteria space. In order to assess the quality of the generated Pareto set for each of presented examples, a rating has been determined based on the entropy measurement and inverted generational distance (IGD).
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 2; 236-245
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies