Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "failure prediction" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The use of stationary tests for analysis of monitored residual processes
Wykorzystanie testów stacjonarności do analizy monitorowanych procesów resztkowych
Autorzy:
Kosicka, E.
Kozłowski, E.
Mazurkiewicz, D.
Powiązania:
https://bibliotekanauki.pl/articles/1365913.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
failure prediction
maintenance
stationary tests
ADF
KPSS
predykcja awarii
utrzymanie ruchu
testy stacjonarności
Opis:
Sustaining high operational efficiency of a machine park requires the use of state-of-art solutions that support both monitoring of residual processes and performing thorough analysis of thereby collected data. What meets the needs of entrepreneurs who strive for high reliability of technological infrastructure is a modern approach to maintenance prediction. The literature of the subject offers numerous studies presenting the use of various statistical models for time series prediction. The objective of this paper is to verify whether tests used in econometrics such as the augmented Dickey-Fuller test and the Kwiatkowski-Phillips-Schmidt-Shin test are suitable for failure prediction. The simulations were performed for one diagnostic parameter, i.e. temperature.
Utrzymanie wysokiego poziomu efektywności eksploatacyjnej parku maszynowego wymaga stosowania nowoczesnych rozwiązań wspierających monitorowanie procesów resztkowych i poddawania szczegółowej analizie uzyskanych w ten sposób informacji. Naprzeciw oczekiwaniom przedsiębiorców dotyczących utrzymywania wysokiego poziomu niezawodności infrastruktury technicznej wychodzi nowoczesne podejście w obszarze gospodarki remontowo-konserwacyjnej, jakim jest predyktywne utrzymanie ruchu. W literaturze przedmiotu wielokrotnie prezentowano wykorzystanie różnych modeli statystycznych pozwalających na prognozowanie wartości szeregów czasowych. Celem niniejszej pracy było sprawdzenie czy stosowany w ekonometrii rozszerzony test Dickeya-Fullera oraz test Kwiatkowskiego, Phillipsa, Schmidta i Shina mogą zostać użyte do predykcji zdarzeń niepożądanych jakimi są awarie. Symulację przeprowadzono dla wartości jednego parametru diagnostycznego jakim była temperatura.
Źródło:
Eksploatacja i Niezawodność; 2015, 17, 4; 604-609
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Time-based machine failure prediction in multi-machine manufacturing systems
Algorytm wsparcia strategii tbm w wielomaszynowych systemach wytwórczych
Autorzy:
Sobaszek, Łukasz
Gola, Arkadiusz
Świć, Antoni
Powiązania:
https://bibliotekanauki.pl/articles/1365197.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
production system
maintenance
reliability
machine failure
prediction
Time-Based Maintenance
system produkcyjny
utrzymanie ruchu
niezawodność
awarie maszyn
predykcja
Opis:
The execution of production processes in real manufacturing systems is associated with the occurrence of numerous disruptions, which predominantly revolve around technological machine failure. Therefore, various maintenance strategies are being developed, many of which tend to emphasise effective preventive measures, such as the Time-Based Maintenance (TBM) discussed in this paper. Specifically, this publication presents the time-based machine failure prediction algorithm for the multi-machine manufacturing environment. The Introduction section outlines the body of knowledge related to typical strategies applied in maintenance. The next part describes an approach to failure prediction that treats processing times as makespan and is followed by highlighting the key role of historical data in machine failure management, in the subsequent section. Finally, the proposed time-based machine failure prediction algorithm is presented and tested by means of a two-step verification, which confirms its effectiveness and further practical implementation.
Realizacja procesów produkcyjnych w rzeczywistych systemach wytwórczych wiąże się z występowaniem wielu zakłóceń, do których zalicza się głównie awarie maszyn technologicznych. W związku z tym obserwowany jest rozwój różnorodnych strategii utrzymania ruchu. Coraz większy nacisk kładziony jest na efektywne działania prewencyjne, do których zalicza się także działania określone w czasie (ang. Time-Based Maintenance – TBM). W niniejszej publikacji zaprezentowano algorytm predykcji awarii maszyn w wielomaszynowych systemach wytwórczych wspierający prewencyjne utrzymanie ruchu. Na wstępie omówiono zagadnienia związane z typowymi strategiami stosowanymi w obszarze UR. Ponadto omówiono tematykę predykcji awarii, zwracając uwagę na ujęcie czasu pracy maszyny jako czasu trwania, a także kluczową rolę wykorzystania danych historycznych dotyczących awarii maszyn. Następnie zaprezentowano proponowany algorytm predykcji wspierający działania określone w czasie. Prezentowane prace zakończono dwuetapową weryfikacją proponowanej metody, która potwierdziła jej skuteczność oraz zasadność wykorzystania.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 1; 52-62
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies