Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sztuczne Sieci Neuronowe" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Odszumianie danych rejestrowanych wielokanałowo z użyciem transformaty falkowej
Multi-channel registered data denoising using wavelet trans form
Autorzy:
Jedliński, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/1366285.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
odszumianie danych
transformata falkowa
sztuczne sieci neuronowe
przekładnia stożkowa
denoising
wavelet transform
artificial neural network
spiral bevel gear
Opis:
W celu uzyskania informacji o interesującym nas zjawisku lub obiekcie najczęściej rejestrowane są wybrane sygnały pomiarowe otrzymane za pośrednictwem czujników. Niestety uzyskane sygnały oprócz pożądanej informacji zawierają również zakłócenia, które są spowodowane m.in. właściwościami toru pomiarowego i procesami towarzyszącymi działaniu obiektu. W wielu przypadkach zachodzi potrzeba pomiaru takiej samej wielkości w różnych miejscach obiektu i/lub kierunkach. Potrzebne są zatem narzędzia do poprawy stosunku sygnału do szumu sygnałów rejestrowanych wielokanałowo. Transformata falkowa jest stosunkowo nową metodą przetwarzania danych, która znalazła zastosowanie w różnych dziedzinach takich jak technika i fizyka. W odniesieniu do sygnałów może być używana do odszumiania, kompresji, wykrywaniu trendu czy nieciągłości sygnału. W pracy tej transformata falkowa została użyta od odszumiania sygnałów drgań zarejestrowanych z dwóch trójosiowych czujników. Obiektem badań była przekładnia zębata stożkowa. Odszumianie sygnałów miało na celu poprawę skuteczności diagnozy uszkodzenia kół zębatych przekładni.
In order to obtain information regarding given phenomenon or object, it is usually necessary to register selected measurement signals obtained using sensors. Unfortunately, obtained signals, apart form desired information, contain disturbances caused by, amongst many other, properties of the measurement channel and processes associated with object operation. In many cases it is necessary to measure the same value in different places and/or directions. Thus, there is a demand for a tool improving signal to noise ration of the multi-channel registered signals.Wavelet transform is a relatively new method of data processing used in different fields (e.g. technique and physics). In case of signals it can be used for denoising, compression, trend detection or discontinuity detection. In this work it was used to denoise vibration signals registered by two three-axis sensors. Object of investigation was the bevel toothed gear. Signals denoising was to improve efficiency of the diagnosis of transmission gears teeth damage.
Źródło:
Eksploatacja i Niezawodność; 2012, 14, 2; 145-149
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks
Eksploatacyjne miary jakości pojazdów w zastosowaniu do oceny usług transportowych z wykorzystaniem sztucznych sieci neuronowych
Autorzy:
Świderski, A.
Jóźwiak, A.
Jachimowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/1365314.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
vehicle operation
evaluation of transport services
quality measures
artificial neural networks
eksploatacja pojazdów
ocena usług transportowych
miary jakości
sztuczne sieci neuronowe
Opis:
Operational vehicle quality measures are an important element used to evaluate the performance of transport services. In practice, there are many methods involved in the operational evaluation of vehicles. They are characterized in this article. Artificial Intelligence methods, especially artificial neural networks, can also be successfully used for this purpose, and especially when deciding on quality assessment processes for machines, including motor vehicles. The use of methods to support decision-making based on facts is extremely important for the credibility and objectivity of the evaluation. These methods can also be used in relation to the use of vehicles in the assessment of transport services. The article presents the method of using artificial neural networks for the operational evaluation of vehicles used in freight transport services. The basis for the verification of the method was an experimental research carried out at a company making dairy products, cooperating with transport companies, supplying products for the production process. The results obtained from the operation of vehicles from the studied companies have confirmed, at the probability level of 99%, high efficiency of the proposed method in evaluating transport services using operational vehicle quality measures.
Eksploatacyjne miary jakości pojazdów są istotnym elementem wykorzystywanym do oceny realizacji usług transportowych. W praktyce mamy do czynienia z wieloma metodami związanymi z eksploatacyjną oceną pojazdów. Scharakteryzowano je w artykule. Metody sztucznej inteligencji, a zwłaszcza sztuczne sieci neuronowe, również mogą być z powodzeniem wykorzystane do tego celu, a zwłaszcza przy podejmowaniu decyzji w procesach oceny jakości maszyn, w tym pojazdów samochodowych. Zastosowanie metod, które pozwalają wspomagać proces decyzyjny na podstawie faktów jest niezmiernie istotne z punktu widzenia wiarygodności i obiektywności oceny. Metody te mogą być również wykorzystane w odniesieniu do eksploatacji pojazdów w zastosowaniu do oceny usług transportowych. W artykule przedstawiono metodę wykorzystania sztucznych sieci neuronowych do eksploatacyjnej oceny pojazdów wykorzystywanych w usługach transportowych towarów. Podstawę weryfikacji metody stanowiły badania eksperymentalne przeprowadzone w przedsiębiorstwie produkującym produkty mleczarskie, współpracującym z firmami transportowymi, dostarczającymi wyroby do produkcji. Uzyskane wyniki potwierdziły z 99-procentowym prawdopodobieństwem wysoką skuteczność proponowanej metody w dokonywaniu oceny usług transportowych z wykorzystaniem eksploatacyjnych miar jakości pojazdów.
Źródło:
Eksploatacja i Niezawodność; 2018, 20, 2; 292-299
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies