Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "swarm" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Multi-objective optimization with adjusted PSO method on example of cutting process of hardened 18CrMo4 steel
Optymalizacja wielokryterialna skorygowaną metodą PSO na przykładzie procesu skrawania stali 18CrMo4 w stanie zahartowanym
Autorzy:
Stryczek, R.
Pytlak, B.
Powiązania:
https://bibliotekanauki.pl/articles/1366141.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
toczenie na twardo
metoda optymalizacji wielocząsteczkowej (PSO)
obliczenia ewolucyjne
optymalizacja wielokryterialna
entropia
hard turning
particle swarm optimization (PSO) method
evolutionary computations
multi-objective optimization
entropy
Opis:
W pracy zaproponowano zmodyfikowaną metodę optymalizacji wielocząsteczkowej (PSO) dla problemów optymalizacji wielokryterialnej z dyskretną przestrzenią decyzyjną. W metodzie PSO zmieniono sposób określania momentu bezwładności, współczynnika uczenia oraz współczynnika społecznego. Dodatkowo wprowadzono elitaryzm oraz innowacyjny mechanizm hamowania cząstek chroniący je przed przekraczaniem dopuszczalnych granic przestrzeni decyzyjnej. Zaproponowane podejście zostało zweryfikowane na szeregu aktualnych funkcjach testowych oraz problemie optymalizacji procesu skrawania stali 18CrMo4 w stanie zahartowanym, gdzie porównano je z wynikami uzyskanymi za pomocą algorytmów genetycznych (GA). Uzyskane wyniki wskazują, że zaproponowane podejście jest względnie szybkie i wysoce konkurencyjne w stosunku do innych metod optymalizacji. Autorzy uzyskali bardzo różnorodne, zbieżne i w pełnym zakresie przebiegi frontu Pareto w przestrzeni kryteriów. W celu oceny jakości wygenerowanego zbioru Pareto dla każdego z prezentowanych przykładów wyznaczono ocenę opartą na pomiarze entropii oraz wskaźnika jakości IGD.
In this paper a Modified Particle Swarm Optimization (PSO) method for multi-objective (MO) problems with a discrete decision space is proposed. In the PSO method the procedure to determine inertia weight, learning factor and social factor is modified. In addition, both an elitism strategy and innovative deceleration mechanism preventing the particles from going beyond the limits of decision space are introduced. The proposed approach has been applied to a series of currently used test functions as well as to optimization problems connected with finish hard turning operation, where the obtained results have been compared with those obtained by means of Genetic Algorithms (GA). The results indicate that the proposed approach is relatively quick, and thus it is highly competitive with other optimization methods. The authors have obtained a very good diversity, convergence and a maximum range of the Pareto front in the criteria space. In order to assess the quality of the generated Pareto set for each of presented examples, a rating has been determined based on the entropy measurement and inverted generational distance (IGD).
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 2; 236-245
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Early prediction of remaining discharge time for lithium-ion batteries considering parameter correlation between discharge stages
Wczesne przewidywanie czasu pozostałego do rozładowania baterii litowo-jonowej z uwzględnieniem korelacji parametrów z różnych etapów procesu rozładowania
Autorzy:
Yu, Jinsong
Yang, Jie
Tang, Diyin
Dai, Jing
Powiązania:
https://bibliotekanauki.pl/articles/1365259.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
lithium-ion battery
parameter correlation
particle swarm optimization (PSO)
particle filter
remaining discharge time prognostics
bateria litowo-jonowa
korelacja parametrów
optymalizacja rojem cząstek
filtr cząsteczkowy
prognozowanie czasu do rozładowania
Opis:
In this paper, we propose a method for making early predictions of remaining discharge time (RDT) that considers information about future battery discharge process. Instead of analyzing the entire degradation process of a battery, as in the existing literature, we obtain the information about future battery condition by decomposing the discharge model into three stages, according to level of voltage loss. Correlation between model parameters at the first and last stages of discharge process allows the values of model parameters in the future to be used to predict the value of parameters at early stages of discharge. The particle swarm optimization (PSO) and particle filter (PF) algorithms are employed to update parameters when new voltage data is available. A case study demonstrates that the proposed approach predicts RDT more accurately than the benchmark PF-based prediction method, regardless of the degradation period of the battery.
W pracy zaproponowano metodę wczesnego przewidywania czasu pozostałego do rozładowania baterii (RDT), która uwzględnia informacje na temat przyszłego procesu jej rozładowywania. Zamiast analizować cały proces degradacji baterii, jak to ma miejsce w literaturze przedmiotu, wykorzystano informacje o przyszłym stanie baterii uzyskane na drodze podziału modelu procesu rozładowania na trzy etapy, według poziomu utraty napięcia. Korelacje między parametrami modelu uzyskanymi na pierwszym i ostatnim etapie procesu rozładowania baterii umożliwiają wykorzystanie przyszłych wartości parametrów do przewidywania wartości parametrów we wczesnych etapach rozładowania. Do aktualizacji parametrów zgodnie z napływającymi nowymi danymi napięciowymi wykorzystano algorytm optymalizacji rojem cząstek (PSO) i algorytm filtra cząsteczkowego (PF). Studium przypadku pokazuje, że proponowane podejście pozwala bardziej precyzyjnie prognozować RDT niż metoda prognozowania oparta na PF, niezależnie od okresu degradacji baterii.
Źródło:
Eksploatacja i Niezawodność; 2019, 21, 1; 81-89
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies