Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "method of calculation" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Automotive stabilizer bars - strength calculations of stabilizer bars using finite element method - directions and general instructions for calculation
Stabilizatory samochodowe – obliczenia wytrzymałościowe stabilizatorów z wykorzystaniem metody elementów skończonych – wskazówki i ogólne wytyczne obliczeniowe
Autorzy:
Wittek, A. M.
Gąska, D.
Matyja, T.
Powiązania:
https://bibliotekanauki.pl/articles/1364145.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz. Przemysłowy Instytut Motoryzacji
Tematy:
stabilizer bar
FEA calculations
stabilizatory samochodowe
obliczenia MES
Opis:
The function of stabilizer bars in motor vehicles is to reduce the body roll during cornering. The body roll is influenced by the occurring wheel load shift and the change of camber angle. Decisive is the steering performance which may be purposefully adjusted towards understeer or oversteer when designing the stabilization. The article contains the further outline of the calculation methods for stabilizer bars. Modern technological and structural solutions in contemporary cars are reflected also in the construction and manufacture of stabilizer bars. A proper construction and the selection of parameters influence the strength properties, the weight, durability and reliability as well as the selection of an appropriate production method. An improper preparation of Finite Element Method calculation models consequently leads to wrong results. It is particularly difficult to interpret the results and to find an error if we do not have a comparative calculation base (such as results of fatigue tests, analytical strength calculations). The article contains practical directions and general instructions for calculation necessary for a correct preparation of calculation models, for a proper performance of calculations and a proper interpretation of results using Finite Element Method.
Stabilizatory w pojazdach samochodowych mają za zadanie redukcję przechyłów poprzecznych podczas jazdy na zakręcie lub pod działaniem innych sił bocznych. Na przechyły boczne zasadniczy wpływ ma przemieszczenie się obciążeń kół jezdnych, jak i zmiany kąta pochylenia kół. Te czynniki mają zasadniczy wpływ na kierowalność pojazdu, która poprzez odpowiedni dobór stabilitzatorów objawia się jako tendecja do podsterowności lub nadsterowności. Artykuł przedstawia zarys podstaw metod obliczeniowych stosowanych w procesie konstrukcji stabilizatorów. Nowoczesne rozwiązania technologiczne i konstrukcyjne we współczesnych pojazdach samochodowych są również widoczne w konstrukcji i produkcji stabilizatorów. Prawidłowa konstrukcja i właściwy dobór parametrów stabilizatora wpływa na jego cechy wytrzymałościowe, ciężar, trwałość i niezawodność, a także na dobór odpowiednich metod produkcyjnych. Niewłaściwe przygotowanie modeli obliczeniowych z wykorzystaniem Metody Elementów Skończonych prowadzi w konsekwencji do błędnych wyników. Szczególnie trudna jest interpretacja wyników i znalezienie błędu, jeśli nie dysponujemy danymi porównawczymi (takimi jak wyniki testów zmęczeniowych lub wynikami analitycznych obliczeń wytrzymałościowych). Artykuł zawiera wskazówki praktyczne i ogólne wytyczne obliczeniowe niezbędne do prawidłowego przygotowania modeli obliczeniowych, do właściwego przeprowadzenia obliczeń i właściwej interpretacji wyników z wykorzystaniem Metody Elementów Skończonych.
Źródło:
Archiwum Motoryzacji; 2014, 65, 3; 37-50
1234-754X
2084-476X
Pojawia się w:
Archiwum Motoryzacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monte Carlo method in analysis of road accidents versus interpretation of calculation results
Metoda Monte Carlo w analizie zdarzeń drogowych, a interpretacja wyników obliczeń
Autorzy:
Wach, W.
Powiązania:
https://bibliotekanauki.pl/articles/1364206.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz. Przemysłowy Instytut Motoryzacji
Tematy:
Monte Carlo method
collision
pedestrian accident
uncertainty
metoda Monte Carlo
zderzenie
potrącenie
niepewność
Opis:
In the article, the Monte Carlo method (MCM) has been characterized from the point of view of road accident reconstruction. This method lies in making repeated calculations with the use of the same deterministic mathematical model, but with picking out the values of specific parameters on a pseudo-random basis from within predefined ranges of uncertainty. The calculation results have been presented in the form of a probability density function similar, in terms of its graphical representation, to a bell-shaped curve; such a form facilitates the statistical interpretation of data and the uncertainty analysis. In particular, it is possible to narrow the range of results by rejecting the extreme areas of low probability. Examples have been presented, focused on the issues concerning the calculation of pre-impact velocities, location of the collision point on the road, and kinematic analysis (referred to as “time-distance analysis”) of the pre-impact phase of a pedestrian accident. In the collision analysis, both the reconstruction methods (based on the momentum conservation principle and on Marquard models of calculating the post-impact velocities) and simulation techniques (simulation of the impact and the dynamics of motion in the PC-Crash program) were employed. It has been shown that the area of the largest concentration of the Monte Carlo simulation results is actually the area of most common responses of the deterministic model used for the data ranges adopted, but not necessarily a reflection of the truth. The crucial point is to develop an adequate mathematical model of the physical phenomenon.
W artykule scharakteryzowano metodę Monte Carlo, skupiając się na jej zastosowaniach w rekonstrukcji wypadków drogowych. Polega ona na wielokrotnym powtarzaniu obliczeń za pomocą tego samego deterministycznego modelu matematycznego, ale w taki sposób, że za każdym razem wartości poszczególnych danych wybierane są pseudolosowo z zadanych zakresów niepewności. Wyniki reprezentowane są przez rozkład gęstości prawdopodobieństwa o kształcie zbliżonym do krzywej dzwonowej, ułatwiając interpretację statystyczną i analizę niepewności. W szczególności możliwe jest zawężenie zakresu wyników poprzez odrzucenie mało prawdopodobnych rejonów skrajnych. Przedstawiono przykłady, w których rozważano problemy dotyczące obliczeń prędkości przedzderzeniowych, położenia punktu kolizji na jezdni oraz analizy kinematycznej fazy przedzderzeniowej potrącenia pieszego (tzw. analizy czasowo-przestrzennej). W analizie zderzenia wykorzystano zarówno metody rekonstrukcyjne (zasada zachowania pędu i Marquardowskie modele obliczenia prędkości pozderzeniowych), jak i symulacyjne (symulacja zderzenia i dynamiki ruchu w programie PC-Crash). Wykazano, że obszar największej koncentracji wyników symulacji Monte Carlo to tylko rejon najczęściej uzyskiwanych odpowiedzi modelu deterministycznego dla przyjętych zakresów danych, a niekoniecznie odzwierciedlenie prawdy. Kwestią fundamentalną jest opracowanie adekwatnego modelu matematycznego zjawiska fizycznego.
Źródło:
Archiwum Motoryzacji; 2014, 66, 4; 83-106
1234-754X
2084-476X
Pojawia się w:
Archiwum Motoryzacji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies