Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "zbieznosc" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Sur les séries de fonctions orthogonales. Première partie
Autorzy:
Menchoff, D.
Powiązania:
https://bibliotekanauki.pl/articles/1385815.pdf
Data publikacji:
1923
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
szereg funkcyjny
analiza matematyczna
zbieżność szeregu
funkcje ortogonalne
zbieżność prawie wszędzie
Opis:
Le but de cette note est de démontrer: Théorème: Si les fonctions $φ_n(x), (n=1,2,3,...)$ forment un système normé de fonctions orthogonales dans l'intervalle (a,b), c'est-à-dire si $∫_a^b [φ_n(x)]^2 dx =1, ∫_a^b φ_m(x)·φ_n(x)dx =0, n ≠ m$, si, de plus, les constantes réelles $a_n$ sont telles que $∑_{n=1}^{∞} a_n^2 (lg n)^2$ converge, la série $∑_{n=1}^{∞} a_n·φ_n(x)$ converge presque partout dans l'intervalle (a,b). Théorème: Quelle que soit la fonction positive W(n) vérifiant la condition $W(n) = o[(lg n)^2]$, il existe toujours un système normé de fonctions $φ_n(x), n=1,2,3,...$, orthogonales dans (0,1), et une suite de constantes réelles $a_n$ telles que la série $∑_{n=1}^{∞} a_n·φ _n(x)$ diverge partout dans (0,1), quoique la série $∑_{n=1}^{∞} a_n^2 W(n)$ converge.
Źródło:
Fundamenta Mathematicae; 1923, 4, 1; 82-105
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Une contribution à létude de la convergence des séries de Fourier
Autorzy:
Kolmogoroff, Andrey
Powiązania:
https://bibliotekanauki.pl/articles/1385786.pdf
Data publikacji:
1924
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
analiza matematyczna
szereg Fouriera
zbieżność prawie wszędzie
Opis:
Posons: $S_n=(a_0)/2 + ∑_(k=1)^(n)(a_k cos kx + b_k sin kx), σ_n = (S_0 + S_1 + ... + S_(n-1))/n $. Le but de cette note est de démontrer: Théorème: Si la suite d'entiers $ n_m (m=1,2,...) $ remplit la condition suivante: $ n_(m+1)/(n_m) > λ >1$, alors, pour la série de Fourier de toute fonction à carré intégrale $S_(n_m)$ converge presque partout vers la fonction donnée. Théorème: Si dans une série de Fourier-Lebesgue tous les termes sont nuls sauf ceux d'indice $n_m$ (les $n_m$ remplissant l'inégalité - hypothèse du théorème précèdent) la série converge presque partout.
Źródło:
Fundamenta Mathematicae; 1924, 5, 1; 96-97
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sur les suites de fonctions analytiques bornées dans leur ensemble
Autorzy:
Khintchin, Aleksandr
Powiązania:
https://bibliotekanauki.pl/articles/1385812.pdf
Data publikacji:
1923
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
zbieżność punktowa
analiza matematyczna
funkcja holomorficzna
miara zbioru
funkcja analityczna
Opis:
Monsieur Montel a démontré que, pour une suite $f_1(z),f_2(z),...,f_n(z),...$ (1) de fonctions holomorphes bornées dans leur ensemble à l'intérieur d'un contour simple et sur le contour lui - même, la convergence en tout point d'un arc quelconque de contour entraîne la convergence uniforme dans tout domaine complèment intérieur au contour. Le but de cette note est de généraliser cette proposition, en démontrant que, pour un contour rectifiable, la condition indiquée peut être remplacée par une moins restrictive, à savoir celle de la convergence de la suite (1) en tout point d'un ensemble de mesure non nulle situé sur le contour.
Źródło:
Fundamenta Mathematicae; 1923, 4, 1; 72-75
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sur les séries de puissances
Autorzy:
Mazurkiewicz, Stefan
Powiązania:
https://bibliotekanauki.pl/articles/1385850.pdf
Data publikacji:
1922
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
zbiór domknięty
analiza matematyczna
zbieżność szeregu
szereg potęgowy
szereg rozbieżny
Opis:
Le but de cette note est de démontrer: Théorème: A étant un ensemble fermé situé sur la circonférence |z|=1, que je désignerai par C, il existe: 1. une série de puissances à coefficients tendant vers zéro, convergente dans tout point de A, divergente dans tout point de C-A; 2. une série de puissances à coefficients tendant vers zéro, divergente dans tout point de A, convergente dans tout point de C-A;
Źródło:
Fundamenta Mathematicae; 1922, 3, 1; 52-58
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sur les fonctions harmoniques conjuguées et les séries de Fourier
Autorzy:
Kolmogoroff, A.
Powiązania:
https://bibliotekanauki.pl/articles/1385715.pdf
Data publikacji:
1925
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
analiza matematyczna
zbieżność wdług miary
funkcja całkowalna
szereg Fouriera
funkcja harmoniczna
Opis:
Théorème: Si f(θ) est une fonction sommable, si de plus $ f(ρ,θ)=1//(2π) ∫_(-π}^(+π) f(α) (1-ρ^2)//(1+ρ^2-2ρ cos(α-θ))dα $, alors, z tendant vers $e^(iθ)$ le long d'un chemin quelconque non tangent à la circonférence, la fonction harmonique g(z) conjuguée à f(z) tend pour presque toutes les valeurs de θ vers une limite déterminée $ g(θ)= - 1/(2π) ∫_(-π}^(+π) f(θ+α)/tg((α)/2)dα $, l'integrale etant comprise comme $ lim_(ϵ → 0) ∫_(-π)^(+ϵ)∫_(-ϵ)^(+π) $. Le but de cette note est de démontrer que la fonction $ |g(θ)|^(1-ϵ) $ est sommable pour ϵ > 0. Comme une conséquence immédiate, l'auteur démontre un théorème sur la convergence en moyenne de la série de Fourier (on peut déduire de ce théorème que toutes les séries de Fourier-Lebesgue convergent en mesure).
Źródło:
Fundamenta Mathematicae; 1925, 7, 1; 24-29
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sur les séries de fonctions orthogonales. Deuxième partie
Autorzy:
Menchoff, D.
Powiązania:
https://bibliotekanauki.pl/articles/1385683.pdf
Data publikacji:
1926
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
analiza matematyczna
zbieżność szeregu
funkcje ortogonalne
metoda całkowania Poissona
metoda całkowania Cesàro
Opis:
Cet article est un suite d'une étude "Sur les séries de fonctions orthogonales" parus au tome VII des cet journal. Soit $ ϕ_1(x), ϕ_2(x), ϕ_3(x), ... , ϕ_n(x) ,... $ (1) un système norme de fonctions orthogonales, et soient $ a_1, a_2, a_3, ... , a_n, ... $ (2) des constantes réelles quelconques. L'auteur a démontrée dans la première parties de son ouvrage qu'il existe une série $ \sum_{n=1}^{∞} a_n · ϕ_n(x) $ (3) divergente partout, tandis que la série $ \sum_{n=1}^{∞}a_n^2 $ (4) converge. Le but principal de cette étude est de démontrer Théorème: Un procédé de sommation linéaire étant donne, on peut définir un système norme de fonctions orthogonales $ ϕ_n(x) $ et une suite de constantes $a_n$, donnant lieu à la série (3) convergente, tels que la série (4) n'est sommable en aucun point par ce procédé. Théorème: La fonction limitrophe pour le procédé de Poisson et pour celui de Cesàro d'ordre positif quelconque λ est égale à $(lg \ lgn)^2$.
Źródło:
Fundamenta Mathematicae; 1926, 8, 1; 56-108
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sur l'ensemble des points de convergence d'une suite de fonctions continues
Autorzy:
Sierpiński, Wacław
Powiązania:
https://bibliotekanauki.pl/articles/1385878.pdf
Data publikacji:
1921
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
ciąg funkcyjny
analiza matematyczna
zbiór F_{σδ}
zbiór liniowy
funkcja rzeczywista
funkcja ciągła
zbieżność ciągu
Opis:
L'object de cette note est la démonstration du théorème suivant: Pour tout ensemble F_{σδ} linéaire donné E il existe une siute infinie des fonctions continues d'une variable réelle x, $F_n(x) (n=1,2,3,...)$, qui converge vers 0 pour les nombres x de E et diverge pour tous les autres x réels.
Źródło:
Fundamenta Mathematicae; 1921, 2, 1; 41-49
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rectification et addition à ma note "Sur lunicité du développement trigonométrique"
Autorzy:
Rajchman, Aleksander
Powiązania:
https://bibliotekanauki.pl/articles/1385838.pdf
Data publikacji:
1923
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
zbiór domknięty
analiza matematyczna
zbieżność szeregu
szereg trygonometryczny
miara Lebesgue'a
zbiór domknięty typu Hardy-Littlevood-Steinhausa
Opis:
Le but de cette notes est rectification et addition à la note "Sur l'unicité du développement trigonométrique" publiée dans Fundamenta Mathematica, vol. III, p.287.
Źródło:
Fundamenta Mathematicae; 1923, 4, 1; 366-367
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sur lunicité du développement trigonométrique
Autorzy:
Rajchman, Aleksander
Powiązania:
https://bibliotekanauki.pl/articles/1385866.pdf
Data publikacji:
1922
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
zbiór domknięty
analiza matematyczna
zbieżność szeregu
szereg trygonometryczny
miara Lebesgue'a
zbiór domknięty typu Hardy-Littlevood-Steinhausa
Opis:
Le but de cette note est de démontrer le suivant théorème: Si la série trigonométrique $a_0/2 + ∑_{n=1}^{n = ∞}(a_n cos2πnx + b_n sin2πnx )$, dont les coefficients $a_n, b_n$ tendent vers zéro quand n → ∞, converge vers zéro partout, sauf peut-être aux points d'un ensemble fermé Z, ou, plus généralement, si partout, sauf peut-être aux points de Z, on a $a_0/2 + lim_{r → 1} ∑_{n=1}^{n = ∞}(a_n cos2πnx + b_n sin2π nx )r^n =0$, alors, pourvu que l'ensemble Z soit du type Hardy-Littlevood-Steinhaus, on aura $a_0=0, a_n=b_n=0 (n=1,2,...)$.
Źródło:
Fundamenta Mathematicae; 1922, 3, 1; 287-302
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies