Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ventilation pipe" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Implementation of modern electronic subsets under construction and control with a wireless inspection vehicle
Wykorzystanie nowoczesnej elektroniki w budowie i sterowaniu bezprzewodowym pojazdem inspekcyjnym
Autorzy:
Filipek, P.
Kamiński, T.
Powiązania:
https://bibliotekanauki.pl/articles/242069.pdf
Data publikacji:
2009
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
mobilny robot inspekcyjny
kanał wentylacyjny
schemat blokowy
sterowanie radiowe
czujniki
mobile inspecting robot
ventilation pipe
block scheme
radio steering
sensors
Opis:
This article shows electronic block structure and individual elements of the cordless inspecting vehicle to air ducts. Modern electronics in the robot is first of all efflciency, fast, 32-bits the processor, radio steering, the cordless, color camera and sensor s measuring all essential parameters in an air duet. Additionally, sensor s of environmental conditions were applied (the temperature, the humidity and detecting thepresence of gas). Processor control administrative elements by entrance keys. Administrative elements are electric engines: chassis, ann, camera tripod and helping vertical wheel. Expect engines processor also switch on buzzer, LED light and halogen. Cordless camera with microphone is independent district reinforced only from robot accumulator. Built robot „ the Inspector l" is a competitive solution to industrial robots of this type applied in the industry. The equipment of environmental sensors delivers to the operator information on conditions occurring in the pipe (temperature, moisture, presence ofv gas, air flow direction, beam intensity etc.). Especially, block scheme of the inspecting system "Inspector l ", block scheme of the operational panel of the system "Inspector l", sensor of the flow and direction of air are presented in the paper.
W artykule przedstawiono i omówiono elektroniczną strukturę blokową oraz poszczególne elementy bezprzewodowego pojazdu inspekcyjnego do przewodów wentylacyjnych. Nowoczesna elektronika robota to przede wszystkim wydajny, szybki, 32-bitowy procesor, radiowe sterowanie, bezprzewodowa, kolorowa kamera oraz czujniki mierzące wszystkie niezbędne parametry w kanale wentylacyjnym. Dodatkowo, zastosowano czujniki warunków środowiskowych (temperatura, wilgotność oraz wykrywanie obecności gazu).Procesor steruje elementami wykonawczymi za pomocą kluczy wyjściowych. Elementami wykonawczymi są w większości silniki elektryczne: podwozia, ramienia, pozycjonera kamery i wspomagającego koła pionowego. Oprócz silników, procesor zalącza buzzer oraz oświetlenie LED i halogen. Bezprzewodowa kamera z mikrofonem jest obwodem niezależnym jedynie zasilanym z akumulatora robota. Budowany robot ,,Inspektor l" wyposażony w wiele nowoczesnych podzespołów elektronicznych oraz nowatorskich rozwiązań konstrukcyjnych stanowi wyśmienite narzędzie do inspekcji i czyszczenia kanałów wentylacyjnych. Jest on jednocześnie rozwiązaniem konkurencyjnym do fabrycznych robotów tego typu stosowanych w przemyśle.
Źródło:
Journal of KONES; 2009, 16, 3; 107-114
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Structural solutions of driving system and sets remotely controlled vehicle to the inspection of ventilating pipes
Rozwiązania konstrukcyjne układu jezdnego i podzespołów zdalnie sterowanego pojazdu do inspekcji kanałów wentylacyjnych
Autorzy:
Filipek, P.
Kamiński, T.
Powiązania:
https://bibliotekanauki.pl/articles/245751.pdf
Data publikacji:
2009
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
mobilny robot inspekcyjny
wspomagające pionowe koło dociskowe
kanał wentylacyjny
konstrukcja układu jezdnego
ruchome ramię robota
pozycjoner kamery
mobile inspecting robot
ventilation pipe
driving system construction
mobile robot arm
helping vertical tighten wheel
camera tripod
Opis:
This article shows function and construction assumptions of mobile, wireless inspection-cleaning robot of ventilating pipes. Robot has got cordless colour camera. Robot has got many different sensors (flow and direction of air, gas, humidity and temperature) it can exactly diagnosed canal in respect of efficiency and presence of fire or gas. Robot arm is equipped in four changeable endings: clutch with pincer, taking in shovel, two traverse brushes (deaning ventilation canals about square or rectangle section) and brush about oblong pivot (cleaning ventilation canals about circled section). Thanks to changeable endings robot can fast become inspector from a cleaning machine. Helping vertical tighten wheel is a innovation introduced to the robot construction, in result it increases wheels tighten to the ground. It will decrease wheel skid and it make possible to drive under larger inclination or in vertical canal. Tighten power vertical wheel to over head partition of ventilation canal is regulated by the tighten sensor. This article shows modelling construction elements of the robot. In certain domains work, the elaborated robot exceeds with functional quality industrial robots by using in it several environmental sensors and innovations.
Artykuł przedstawia założenia funkcyjne i konstrukcyjne mobilnego, bezprzewodowego robota do inspekcji i czyszczenia kanałów wentylacyjnych. Robot wyposażony w kolorową kamerę przekazuje obraz bezprzewodowo. Wzbogacony o różne czujniki (min. przepływu i kierunku powietrza, gazu, wilgotności i temperatury) może dokładnie zdiagnozować kanał pod kątem sprawności oraz obecności gazu lub ognia. Ramię robota jest wyposażone w cztery zamienne końcówki: chwytak ze szczypcami, łyżkę nabierającą, dwie szczotki poprzeczne (czyszczenie kanałów o przekroju prostokątnym lub kwadratowym) oraz szczotka o osi podłużnej (czyszczenie kanałów o przekroju kołowym). Dzięki wymiennym końcówkom robot może szybko przeistoczyć się z inspektora w maszynę czyszczącą. Wspomagające pionowe koło dociskowe jest innowacją wprowadzoną do konstrukcji robota „Inspektor l" w celu zwiększenia docisku kół do podłoża. Zapewni to zmniejszenie się poślizgu kół oraz możliwość jazdy pod większym nachyleniem lub w kanale pionowym. Siła docisku koła pionowego do górnej ścianki kanału wentylacyjnego jest regulowana za pomocą umieszczonego w konstrukcji czujnika nacisku. W artykule przedstawiono zamodelowane elementy konstrukcyjne robota.
Źródło:
Journal of KONES; 2009, 16, 4; 75-82
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improving efficiency of heat exchange of horizontal ground-air heat exchanger for geothermal ventilation systems
Podwyższenie efektywności wymiany ciepła poziomego gruntowego wymiennika ciepła systemu wentylacji geotermalnej
Autorzy:
Zhelykh, V.
Savchenko, O.
Matusevych, V.
Powiązania:
https://bibliotekanauki.pl/articles/362502.pdf
Data publikacji:
2016
Wydawca:
Instytut Fizyki Budowli Katarzyna i Piotr Klemm
Tematy:
geothermal ventilation system
horizontal ground-air heat exchanger
heat pipe
wentylacja geotermalna
poziomy wymiennik ciepła ziemia-powietrze
rurka cieplna
Opis:
The geothermal ventilation system is used in the passive house for saving of traditional fuels. In this system, low-grade heat the ground is used for pre-heating fresh outside air. The selection of heat from the ground is carried by ground-air heat exchangers. The constructions of the existing horizontal ground-air heat exchangers for the selection of low-grade heat ground were considered in the article. Authors of article proposed to mount the heat pipes in the wall of the heat exchanger for an increase the heat transfer efficiency of the horizontal ground-air heat exchanger for geothermal ventilation system. The evaporation and condensation processes in the heat pipes and the availability of protruding parts of heat pipes allows to intensify heat transfer process between of the air flow and ground through the wall of the heat exchanger.
Aby minimalizować wykorzystanie paliw tradycyjnych w budynkach pasywnych stosuje się wentylację geotermalną. W tym systemie, ciepło z ziemi jest wykorzystywane do wstępnego podgrzewania świeżego powietrza. Podbieranie energii cieplnej z gruntu odbywa się za pomocą gruntowych wymienników ciepła pionowych bądź poziomych. W artykule przedstawiono konstrukcje istniejących gruntowych poziomych wymienników ciepła. W celu zwiększenia efektywności wymiany ciepła poziomego wymiennik ciepła ziemia-powietrze w geotermalnym systemie wentylacji autorzy artykułu proponują wmontowanie rurek cieplnych w ściance wymiennika ciepła. Odparowanie i procesy kondensacji w rurkach cieplnych oraz wystające części rurek cieplnych pozwalają na zintensyfikowanie procesu wymiany ciepła pomiędzy przepływającym powietrzem a ziemią przez ścianki wymiennika ciepła.
Źródło:
Fizyka Budowli w Teorii i Praktyce; 2016, T. 8, nr 4, 4; 43-46
1734-4891
Pojawia się w:
Fizyka Budowli w Teorii i Praktyce
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Verification of the effects of the secondary heat recovery from ventilation air in an animal house for the fattening of broiler chickens
Autorzy:
Adamovsky, R.
Adamovsky, D.
Kara, J.
Neuberger, P.
Powiązania:
https://bibliotekanauki.pl/articles/61735.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich PAN
Tematy:
verification
secondary heat recovery
ventilation
air
animal house
fattening
broiler chicken
heat exchanger
gravitation thermal pipe
exchanger efficiency
thermal balance
specific energy consumption
energy consumption
heat recovery system
Opis:
This paper presents results of the verification of a heat exchanger composed of gravitation thermal pipes installed in a broiler chicken feeding facility. The objective of the study was to verify the possibility of the application of a power management system including a heat recovery system in a heavy-duty environment of a broiler chicken fattening facility and to specify effects of the system upon the specific consumption of energy for space heating and ventilation of the animal house. The calculation of the thermal balance of the animal house documents that the power management system that includes a heat recovery exchanger unit may reduce the thermal capacity of external sources of heat in the animal house by 26.5% even when subject to extreme conditions and at the atmospheric temperature of -12°C and the age of chickens being 1 day. The results of the metering and calculations of the efficiency have proven that the heat exchanger reaches the operational efficiency of 10–47% and thermal efficiency of 20–80% even during the most demanding operational first twenty days of the breeding cycle of broiler chickens. The specific consumption of energy for space heating and ventilation related to 1 kg of the live weight of chicken in the animal house facility A provided with a heat recovery exchanger unit at the average atmospheric temperature during the cycle being 4.3°C amounted to 278.5 Wh. In the animal house B as not provided with the heat recovery exchanger units hosting the same number of chickens and provided with the same process and thermal loss due heat transmission through peripheral structures being one half compared to the animal house A, the specific consumption of energy per 1 kg of the live weight of chicken was 420.5 Wh.
Źródło:
Infrastruktura i Ekologia Terenów Wiejskich; 2008, 06
1732-5587
Pojawia się w:
Infrastruktura i Ekologia Terenów Wiejskich
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies