- Tytuł:
- Influence of geometry and annealing temperature in argon atmosphere of TiO2 nanotubes on their electrochemical properties
- Autorzy:
-
Nycz, Marta
Paradowska, Ewa
Arkusz, Katarzyna
Pijanowska, Dorota Genowefa - Powiązania:
- https://bibliotekanauki.pl/articles/307103.pdf
- Data publikacji:
- 2020
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
dwutlenek tytanu
TiO2
modyfikacja termiczna
wyżarzanie
titanium dioxide (TiO2)
titanium nanotubes
thermal modification
annealing - Opis:
- In this paper, electrochemical properties of the as-formed and thermally treated titanium dioxide (TiO2) nanotubes with diameter in the range of 20–100 nm and height in the range of 100–1000 nm were presented. In addition, the effects of annealing temperature (450–550 °C) on the electrochemical characteristics of these structures, as well as the influence of diameter and height of TiO2 nanotubes on these properties were examined. The results were referred to a compact TiO2 layer (100 nm thick). Methods: The electrochemical test included open circuit potential, impedance spectroscopy and cyclic voltammetry measurements. The scanning electron microscope with energy dispersive spectroscopy analyser, x-ray photoelectron spectroscopy, and x-ray diffraction analysers were used for surface morphology characterisation as well as elemental, phase and chemical composition of TiO2 layers. Results: It was found that nanotubes with the diameter of 50 and 75 nm (height of 1000 nm) annealed at 550 °C exhibit the lowest impedance and phase angle values. However, the voltammetric detection of potassium ferricyanide indicated that the closest to 1 Ipc /Ipa ratio were shown by nanotubes with a diameter of 50 and 75 nm annealed at 450 °C. Conclusions: On the basis of performed analysis, it can be stated that the TiO2 layer with nanotubes of 50 nm in diameter and of 1000 nm in height, annealed in 450 °C may be indicated as the ones having the most favourable sensing and biosensing properties.
- Źródło:
-
Acta of Bioengineering and Biomechanics; 2020, 22, 1; 165-177
1509-409X
2450-6303 - Pojawia się w:
- Acta of Bioengineering and Biomechanics
- Dostawca treści:
- Biblioteka Nauki