Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "structure of material" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Determination of the optimal parameters of the structure of functional gradient materials using mathematical modelling approaches
Autorzy:
Lyashenko, B. A.
Stotsko, Z. A.
Kuzin, O. A.
Kuzin, M. O.
Mikosianchyk, O. A.
Powiązania:
https://bibliotekanauki.pl/articles/368219.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
functional gradient material
microhardness
wear
optimal structure of tribosystem’s material
materiały gradientowe
materiały funkcjonalne
mikrotwardość
zużycie
struktura optymalna
Opis:
Purpose: Functioning of mechanical friction systems largely depends on the characteristics of the structure of their surface layers. By controlling these parameters, it is possible to significantly adjust the reliability and durability of parts under the conditions of contact interaction. Design/methodology/approach: he proposed approach, which is based on the principle of nonlocality of the operational properties of materials, allows determining the optimal microhardness values of the surface layers and the gradient of this parameter, at which the contact durability of friction pair elements significantly increases. Findings: It is established that by adjusting the ratios of the surface strength of materials and its gradient, it is possible to achieve a significant increase in the operational parameters of friction units. Practical implications: The engineering relationship considered in the work allows to establish functional distributions of microhardness in the structure of surface layers, at which their wear reaches minimum values. Originality/value: Mathematical approaches are proposed, which allow determining the parameters of the structure of the surface layers of parts to increase their durability under conditions of friction contact loads.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2019, 92, 1-2; 13-18
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A literature survey of the influence of preform reheating and stretch blow molding with hot mold process parameters on the properties of PET containers. Part I
Przegląd literatury dotyczącej wpływu parametrów procesu rozdmuchiwania z jednoczesnym rozciąganiem z zastosowaniem gorącej formy rozdmuchowej na właściwości pojemników PET. Cz. I.
Autorzy:
Wawrzyniak, Paweł
Karaszewski, Waldemar
Powiązania:
https://bibliotekanauki.pl/articles/945870.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Chemii Przemysłowej
Tematy:
stretch blow molding process
hot filling process
structure of PET material
hot fill PET bottles
proces formowania opakowań metodą rozdmuchiwania z rozciąganiem
nalewanie napojów na gorąco
struktura opakowań PET
opakowania PET przystosowane do napełniania na gorąco
Opis:
The paper presents a wide analysis of the literature on the modified blow molding process with simultaneous stretching of PET material for storing hot filled drinks. The hot fill process is an inexpensive conventional filling technology for high-acidity products (pH < 4.5). It allows certain drinks (sensitive beverages such as fruit and vegetable juices, nectars, soft drinks, vitaminized water) to be stored at ambient temperature without the need for chemical preservatives. The primary feature of the bottles used in the hot fill process is their temperature stability, i.e. the ability to retain the shape of the bottle at the filling temperature. From a mechanical point of view, the thermal stability of PET [poly(ethylene terephthalate)] bottles manufactured by the ISBM (injection stretch blow molding) process is determined by the mechanical and thermal response of the blown preforms. From a microscopic point of view, the strongest influences on the mechanical and thermal properties of PET bottles are the orientation and crystallization processes. From a technological point of view, the properties of PET bottles after manufacture by the stretch blow molding process is mainly determined by the initial structure of the PET preform, the geometry and temperature distribution of the preform, the geometry of the blow mold, the temperature of the blow mold and its distribution in various parts of the mold and technological parameters of the blow molding process.
Artykuł stanowi szeroką analizę literatury dotyczącej zmodyfikowanego procesu rozdmuchiwania z jednoczesnym rozciąganiem tworzywa PET, przeznaczonego do produkcji butelek do przechowywania napojów nalewanych na gorąco. Proces napełniania na gorąco jest relatywnie tanią konwencjonalną technologią konfekcjonowania produktów o wysokiej kwasowości (pH < 4,5).Umożliwia przechowywanie napojów wrażliwych, takich jak: soki owocowe i warzywne, nektary, napoje bezalkoholowe, woda witaminizowana w temperaturze otoczenia bez potrzeby stosowania chemicznych środków konserwujących. Podstawową cechą opakowań stosowanych w procesie napełniania na gorąco jest ich stabilność termiczna, tj. zdolność do zachowania kształtu butelki w temperaturze napełniania. Z mechanicznego punktu widzenia stabilność termiczna butelek PET [z poli(tereftalanu etylenu)] wytwarzanych w procesie ISBM (jednostopniowa technologia wtryskiwania z rozciąganiem i rozdmuchiwaniem) jest określona przez odpowiedź mechaniczną i termiczną rozdmuchiwanych preform. Z punktu widzenia analizy mikroskopowej największy wpływ na właściwości mechaniczne i termiczne butelek PET mają procesy orientacji i krystalizacji tworzywa. Pod względem technologicznym właściwości butelek PET po wytworzeniu w procesie formowania metodą rozdmuchiwania z rozciąganiem są determinowane głównie przez początkową strukturę preformy PET, geometrię i rozkład temperatury preformy, geometrię i rozkład temperatury formy do rozdmuchiwania oraz parametry technologiczne procesu formowania z rozdmuchiwaniem.
Źródło:
Polimery; 2020, 65, 5; 346-356
0032-2725
Pojawia się w:
Polimery
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A literature survey of the influence of preform reheating and stretch blow molding with hot mold process parameters on the properties of PET containers Part II
Przegląd literatury dotyczącej wpływu parametrów procesu rozdmuchiwania z jednoczesnym rozciąganiem z zastosowaniem gorącej formy rozdmuchowej na właściwości pojemników PET. Cz. II
Autorzy:
Wawrzyniak, Paweł
Karaszewski, Waldemar
Powiązania:
https://bibliotekanauki.pl/articles/947154.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Chemii Przemysłowej
Tematy:
stretch blow molding process
hot filling process
structure of PET material
hot fill PET
bottles
proces formowania opakowań metodą rozdmuchu z rozciąganiem
nalewanie napojów na gorąco
struktura opakowań PET
opakowania PET przystosowane do nalewania na gorąco
Opis:
The paper presents a wide analysis of the literature on the modified blow molding process with simultaneous stretching of PET [poly(ethylene terephthalate)] material for storing hot filled drinks. The paper is a continuation of the first part presented earlier [1]. In this part it is presented in detail the impact of stretch blow molding with hot mold process parameters on thermal resistance of PET containers. An analysis of the literature shows that the relaxation of the amorphous phase has the greatest impact on the thermal stability and pressure resistance of the bottle. At the same time, the thermal stability of the bottle increases, and the pressure strength decreases when the relaxation of the amorphous phase is increased, and the crystallites increase to the largest size possible without causing thermal whitening of the material. The measure of relaxation of the amorphous phase is based on the amount of oriented and “rigid” amorphous phase, since the higher the degree of relaxation of the amorphous phase, the smaller the amounts of oriented and rigid amorphous phase. The main parameters of the hot mold SBM process that affect the properties of the hot filling bottle are the intrinsic viscosity of the preform material, the power profile of the heating lamps in the heating oven (there are seven levels of heating lamps), the heating time in the oven and the associated time of temperature-induced crystallization prior to the SBM process, the speed of the stretching rod, the pre-blow delay due to the stretching rod position, the pre-blow pressure, pre-blow duration, air blow pressure, duration of the main blow, temperature profile of the heated blow mold (there are two heat zones for the blow mold, the lateral surface of the bottles and base zone), duration of annealing in the mold, cooling air temperature of a bottle in a blow mold fed by a stretching rod, and the pressure in the feed branch for air cooling of a bottle in a blow mold fed by a stretching rod. Thus, the properties of a bottle or hot fill can be influenced by as many as 20 factors during the SBM process with a hot mold.
Artykuł jest kontynuacją I części [1], w której przedstawiono szeroką analizę literatury dotyczącej zmodyfikowanego procesu rozdmuchiwania z jednoczesnym rozciąganiem tworzywa PET [poli(tereftalanu etylenu)] – w celu wytworzenia butelek do przechowywania napojów nalewanych na gorąco. W części drugiej szczegółowo opisano zależność odporności termicznej pojemników PET od przebiegu procesu rozdmuchiwania z jednoczesnym rozciąganiem. Z analizy literatury wynika, że największy wpływ na stabilność termiczną i wytrzymałość mechaniczną butelki ma relaksacja fazy amorficznej. Stabilność termiczna butelki rośnie, a wytrzymałość na ciśnienie się zmniejsza, gdy zwiększa się relaksacja fazy amorficznej, a kryształy osiągają możliwie największe wymiary, niepowodujące termicznego zabielenia materiału. Miarę relaksacji fazy amorficznej w tworzywie stanowią udziały zorientowanej i „sztywnej” fazy amorficznej, ponieważ im wyższy stopień relaksacji, tym mniejsze ich ilości. Na właściwości butelki przeznaczonej do nalewania na gorąco może wpływać aż 20 parametrów procesu rozdmuchiwania z jednoczesnym rozciąganiem z gorącą formą. Główne czynniki to: lepkość istotna materiału preformy, profil mocy lamp grzewczych w piecu grzewczym (istnieje siedem poziomów lamp grzewczych), czas ogrzewania preform w piecu i związany z nim czas krystalizacji indukowanej temperaturą przed procesem SBM, prędkość pręta rozciągającego, opóźnienie wstępnego rozdmuchu względem położenia pręta rozciągającego, ciśnienie i czas trwania wstępnego rozdmuchu, ciśnienie i czas trwania głównego rozdmuchu, profil temperaturowy podgrzewanej formy rozdmuchowej (istnieją dwie strefy grzewcze dla formy rozdmuchowej, powierzchnia boczna i strefa denka), czas trwania wyżarzania w formie, temperatura i ciśnienie powietrza chłodzącego butelkę w formie rozdmuchowej doprowadzanego przez pręt rozciągający.
Źródło:
Polimery; 2020, 65, 6; 437-448
0032-2725
Pojawia się w:
Polimery
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Buildings of the John Paul II Center – a challenge for civil engineering and architecture
Obiekty budowlane Centrum Jana Pawła II – wyzwanie dla budownictwa i architektury
Autorzy:
Wrana, Bogumił
Wrana, Jan
Powiązania:
https://bibliotekanauki.pl/articles/390637.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
John Paul II Centre in Cracow
limestone sediments
reinforced concrete CFA-type drilled piles
reiforced concrete frame and membrane structure
natural material solutions
respect for context and identity of the place
Centrum Jana Pawła II w Krakowie
osady wapienne
żelbetowe pale wiercone typu CFA
konstrukcja szkielet żelbetowy ramowo-powłokowy
rozwiązania z naturalnego materiału
poszanowanie kontekstu i tożsamości miejsca
Opis:
The buildings of the John Paul II Centre (CJPII) are located in Cracow-Łagiewniki on a heap of limestone sediments from the former "Solvay" Sodium Plant in Cracow. The area is called "White Seas" (Białe Morze) and is located in the natural depression of the Wilga river valley, between Św. Józefa hill in the north and Borkowska Hill (Góra Borkowska) in the south-west. The limestone sediments as a building substrate for CJPII buildings is unprecedented ground in the world and thus a challenge for civil engineering. The height of the heap reaches about 15 m and has retained the consistency of a white pulp until today. CJPII buildings are objects of the third geotechnical category, founded on a foundation slab of 0.8-m thickness, and in the central part of 0.45-m thickness. The slab is based on 200 reinforced concrete CFA-type drilled piles with a diameter of 1000 mm and 650 mm and length up to 26 m. The load-bearing structure of the CJPII buildings is a reinforced concrete frame and shell structure. The symbolism of the urban complex (e.g. the scale of the market square in Wadowice), located on a system of 200 piles above the post-industrial landfill/heaps of sediments, is ensured with architectural solutions referring to places connected with the life of John Paul II – during the occupation in 1940-1944 he was a student of Jagiellonian University in Cracow and the worker of the Solvay factory in the Podgórze district, in 1958 he became a bishop of Cracow, in 1967 – the cardinal (architectural details from the St. Mary Church and the Wawel Cathedral), 1978-2005 – the pilgrim-pope from Rome, who confirmed the mission of the Church continuing the tradition depicted in the early-christian churches on the wall mosaics (the Basilica of San Vitale and the Basilica of Sant’ Apollinare Nuovo in Ravenna).
Obiekty budowlane Centrum Jana Pawła II (CJPII) znajdują się w Krakowie-Łagiewnikach na hałdzie osadów wapiennych z dawnych Krakowskich Zakładów Sodowych „Solvay”. Obszar ten nosi nazwę „Białe Morze” i został zlokalizowany w naturalnym obniżeniu doliny rzeki Wilgi, pomiędzy wzniesieniem św. Józefa na północy, a Górą Borkowską na południowym zachodzie. Osadnik wapienny jako podłoże budowlane dla budynków CJPII jest niespotykanym w świecie gruntem i stąd stał się wyzwaniem dla inżynierii lądowej. Wysokość osadnika hałdy sięga ok. 15 m, do dziś zachował on konsystencję pulpy koloru białego. Budynki CJPII to obiekty trzeciej kategorii geotechnicznej, posadowione na płycie fundamentowej grubości 0.8 m, a w części środkowej o grubości 0.45 m. Płyta oparta jest na 200 żelbetowych palach wierconych typu CFA o średnicy 1000 mm oraz 650 mm i długości do 26 m. Konstrukcja nośna budynków CJPII to żelbetowy szkielet ramowo-powłokowy. Symbolikę założenia urbanistycznego CJPII (wraz z placem w skali rynku w Wadowicach przed Sanktuarium), które usytuowano na płycie w sieci 200 pali nad odpadem poprodukcyjnym/hałdami jego osadu, zapewniają detale architektoniczne odnoszące się do miejsc związanych z życiem Jana Pawła II – podczas okupacji w latach 1940-1944 studenta UJ i robotnika fabryki Solvay w dzielnicy Podgórze, od 1958 r. biskupa krakowskiego, od 1967 r. kardynała (detale Katedry Wawelskiej oraz Kościoła Mariackiego), w latach 1978-2005 „papieża-pielgrzyma” z Rzymu, utrwalającego misję Kościoła kontynuującego tradycję przedstawianą w świątyniach wczesnochrześcijańskich na ściennych mozaikach (Bazylika San Vitale i Bazylika Sant’ Apollinare Nuovo w Rawennie).
Źródło:
Budownictwo i Architektura; 2020, 19, 4; 109-124
1899-0665
Pojawia się w:
Budownictwo i Architektura
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies