Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "soil stabilization" wg kryterium: Temat


Tytuł:
Binding of Industrial Deposits of Heavy Metals and Arsenic in the Soil by 3-Aminopropyltrimethoxysilane
Autorzy:
Grzesiak, P.
Łukaszyk, J.
Schroeder, G.
Kurczewska, J.
Powiązania:
https://bibliotekanauki.pl/articles/778689.pdf
Data publikacji:
2014
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
nanotechnology
heavy metals
soil stabilization
Opis:
The results of the research studies concerning binding of heavy metals and arsenic (HM+As), occurring in soils affected by emissions from Głogów Copper Smelter and Refinery, by silane nanomaterial have been described. The content of heavy metals and arsenic was determined by AAS and the effectiveness of heavy metals and arsenic binding by 3-Aminopropyltrimethoxysilane was examined. The total leaching level of impurities in those fractions was 73.26% Cu, 74.7% – Pb, 79.5% Zn, 65.81% – Cd and 55.55% As. The studies demonstrated that the total binding of heavy metals and arsenic with nanomaterial in all fractions was about as follows: 20.5% Cu, 9.5% Pb, 7.1% Zn, 25.3% Cd and 10.89% As. The results presented how the safety of food can be cultivated around industrial area, as the currently used soil stabilization technique of HM by soil pH does not guarantee their stable blocking in a sorptive complex.
Źródło:
Polish Journal of Chemical Technology; 2014, 16, 2; 12-15
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of silica functionalized with silanes on migration of heavy metals in soil
Autorzy:
Grzesiak, P.
Łukaszyk, J.
Gabała, E.
Kurczewska, J.
Schroeder, G.
Powiązania:
https://bibliotekanauki.pl/articles/777881.pdf
Data publikacji:
2016
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
functionalized silica
heavy metals
Soil stabilization
Opis:
3-Mercaptopropyl-trimethoxysilane and [3-(2-aminoethylamino)propyl]trimethoxysilane were used to functionalize the surface of silica from Piotrowice in Poland to stabilize heavy metals (HMs) and arsenic in soil. The soil for the study was sampled from the impact zone of Głogów Copper Smelter and Refinery. The soil samples were exposed to five-step Tessier sequential extraction. The speciation studies were limited to five sequentially defined fractions in which metal content was determined. The addition of unmodified silica did not affect significantly the concentration of metals in individual fractions. Significant changes were noted upon introduction of functionalized silica in the soil. The hybrid formulations obtained significantly reduce the release of heavy metals and arsenic from soil sorption complex. The results indicate the potential use of functional formulations for reduction of metal migration in soil in the areas of exceeded concentration of heavy metals and arsenic in the soil, caused by industrial activity.
Źródło:
Polish Journal of Chemical Technology; 2016, 18, 1; 51-57
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Remediation of heavy metals from soil using quartz sand functionalized with organic amino silanes
Autorzy:
Grzesiak, P.
Łukaszyk, J.
Schroeder, G.
Kurczewska, J.
Powiązania:
https://bibliotekanauki.pl/articles/777891.pdf
Data publikacji:
2013
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
quartz sand
heavy metals
soil stabilization
Opis:
The results of the research studies concerning the binding of heavy metals (HMs) by quartz sand functionalized with amino silanes have been described. The studies have been carried out on soils sampled from the areas affected by emissions from Copper Smelter and Refinery. The research aims to increase the food safety in the areas of industrial impact. The presence of polyamine chain in the hybrid materials obtained enables a binding of heavy metals (nickel, copper, cobalt). The best results are observed for the hybrid material having four amine groups (four coordination centers) per molecule. For this material the highest content after two extraction cycles (pH 7.0 and 5.0) is observed for copper (98.2%), but for other ions (nickel, cobalt) it is at least 85% of the initial amount of components available for plants.
Źródło:
Polish Journal of Chemical Technology; 2013, 15, 4; 116-120
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The modelling of soil-binder composites
Modelowanie kompozytów gruntowo-spoiwowych
Autorzy:
Rafalski, L.
Ćwiakała, M.
Kraszewski, C.
Korzeniowska, J.
Powiązania:
https://bibliotekanauki.pl/articles/2083842.pdf
Data publikacji:
2022
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
soil stabilization
soil-binder composite
modelling of composites
Opis:
The development of an appropriate soil-binder composite (stabilized soil) is associated with the selection of the appropriate strength class of the hydraulic binder (e.g. ash-cement) and its amount to stabilize the soil. Advanced statistical methods based on the use of the spline function were used in the analysis of tests of soil- -binder composites. The analysis presents statistical modelling as a tool helpful in the design of soil-binder composites, showing possible interactions between the components of materials included in the mineral composition of composites. A logarithmic model of the compressive stress forecast was developed for soil-binder composites both with freezing cycles of the soil composition and without freezing cycles, in which the composites hardening time and the addition of ash-cement binders to the soil were continuous variables.
Źródło:
Acta Scientiarum Polonorum. Architectura; 2022, 21, 1; 3-8
1644-0633
Pojawia się w:
Acta Scientiarum Polonorum. Architectura
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ultrasonic P- and S-Wave Reflection and CPT Soundings for Measuring Shear Strength in Soil Stabilized by Deep Lime/Cement Columns in Stockholm Norvik Port
Autorzy:
Lindh, Per
Lemenkova, Polina
Powiązania:
https://bibliotekanauki.pl/articles/31339810.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
civil engineering
soil stabilization
compressive strength
cement
lime
seismic waves
Opis:
In this research project, the measurements of the ultrasonic P- and S-waves and seismic cone penetration testing (CPT) were applied to identify subsurface conditions and properties of clayey soil stabilized with lime/cement columns in the Stockholm Norvik Port, Sweden. Applied geophysical methods enabled to identify a connection between the resistance of soil and strength in the stabilized columns. The records of the seismic tests were obtained in the laboratory of Swedish Geotechnical Institute (SGI) through estimated P- and S-wave velocities using techniques of resonance frequency measurement of the stabilized specimens. The CPT profiles were used to evaluate the quality of the lime/cement columns of the reinforced soil by the interpretation of signals. The relationship between the P- and S-waves demonstrated a gain in strength during soil hardening. The quality of soil was evaluated by seismic measurements with aim to achieve sufficient strength of foundations prior to the construction of the infrastructure objects and industrial works. Seismic CPT is an effective method essential to evaluate the correct placement of the CPT inside the column. This work demonstrated the alternative seismic methods supporting the up-hole technology of drilling techniques for practical purpose in civil engineering and geotechnical works.
Źródło:
Archives of Acoustics; 2023, 48, 3; 325-346
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strength and Durability of Cement Stabilized Expansive Soil Amended with Sugarcane Press Mud
Autorzy:
James, Jijo
Selvam, Akilan Gunaselvi
Annamalai, Krishna Khumaar
Marimuthu, Vishal
Srinivasan, Vishnu Varadhan
Kolamurugan, Sooraj
Powiązania:
https://bibliotekanauki.pl/articles/27314707.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
soil stabilization
sugarcane
waste
durability
stabilizacja gruntu
odpady
trzcina cukrowa
trwałość
wytrzymałość
Opis:
The present investigation delved into the performance of cement stabilized soil amended with sugarcane press mud (PM), an organic waste residue from the sugar industry. An expansive soil was stabilized using 3% and 8% ordinary Portland cement (OPC) and modified with 1%, 3% and 5% PM. Cylindrical samples of dimensions 38 mm diameter and 76 mm height were cast and cured for 7, 14 and 21 days for all combinations considered. After the designated curing periods, the specimens were strained axially until failure to determine the strength of the samples. Samples were also subjected to alternate cycles of wetting and drying and the resistance to loss in weight was determined. The results of the investigation revealed that PM can be considered as a strength accelerator due to enhancement in early strength of the samples at 7 days of curing but beneficial strength gain could not be sustained over extended curing periods considered. However, 1% and 3% PM modified specimens were more resistant to weight loss when compared to pure cement stabilized specimens. Based on the results of the investigation, PM can be considered as a potential auxiliary additive to cement stabilized soil for improving the durability performance of the soil.
Źródło:
Civil and Environmental Engineering Reports; 2022, 32, 1; 138--151
2080-5187
2450-8594
Pojawia się w:
Civil and Environmental Engineering Reports
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The modelling of soil-binder composites
Modelowanie kompozytów gruntowo-spoiwowych
Autorzy:
Rafalski, L.
Cwiakala, M.
Kraszewski, C.
Korzeniowska, J.
Powiązania:
https://bibliotekanauki.pl/articles/2106767.pdf
Data publikacji:
2022
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
soil stabilization
soil-binder composite
modelling of composites
stabilizacja gruntu
kompozyt gruntowo-spoiwowy
modelowanie kompozytów
Opis:
The development of an appropriate soil-binder composite (stabilized soil) is associated with the selection of the appropriate strength class of the hydraulic binder (e.g. ash-cement) and its amount to stabilize the soil. Advanced statistical methods based on the use of the spline function were used in the analysis of tests of soil-binder composites. The analysis presents statistical modelling as a tool helpful in the design of soil-binder composites, showing possible interactions between the components of materials included in the mineral composition of composites. A logarithmic model of the compressive stress forecast was developed for soil-binder composites both with freezing cycles of the soil composition and without freezing cycles, in which the composites hardening time and the addition of ash-cement binders to the soil were continuous variables.
Opracowanie odpowiedniego kompozytu gruntowo-spoiwowego (gruntu stabilizowanego) jest związane z dobraniem właściwej klasy wytrzymałości spoiwa hydraulicznego (np. popiołowo-cementowego) i jego ilości do stabilizowania gruntu. W analizie badań kompozytów gruntowo-spoiwowych zastosowano zaawansowane metody statystyczne oparte na wykorzystaniu funkcji spline. W analizie przedstawiono modelowanie statystyczne jako narzędzie pomocne w projektowaniu kompozytów gruntowo-spoiwowych, pokazujące możliwe interakcje zachodzące między komponentami materiałów znajdujących się w składzie mineralnym kompozytów. Opracowano model logarytmiczny prognozy naprężenia ściskającego kompozytów gruntowo-spoiwowych zarówno z cyklami zamrażania kompozycji gruntu, jak i bez cykli zamrażania, w którym zmiennymi ciągłymi były czas twardnienia kompozytów i dodatek spoiw popiołowo-cementowych do gruntu.
Źródło:
Acta Scientiarum Polonorum. Architectura; 2022, 21, 2; 3-8
1644-0633
Pojawia się w:
Acta Scientiarum Polonorum. Architectura
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of steel slag in stabilizations of expansive soil: an experimental study
Autorzy:
Kabeta, Worku Firomsa
Powiązania:
https://bibliotekanauki.pl/articles/2203418.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
grunt ekspansywny
parametr geotechniczny
stabilizacja gruntu
żużel stalowniczy
expansive soil
geotechnical parameter
soil stabilization
steel slag
Opis:
This study was carried out to evaluate the effect of steel slag (SS) as a by-product as an additive on the geotechnical properties of expansive soil. A series of laboratory tests were conducted on natural and stabilized soils. Steel slag (SS) was added at a rate of 0, 5, 10, 15, 20, and 25% to the soil. The conducted tests are consistency limits, specific gravity, grain size analysis, modified Proctor compaction, free swell, unconfined compression strength, and California Bearing Ratio. The Atterberg limit test result shows that the liquid limit decreases from 90.8 to 65.2%, the plastic limit decreases from 60.3 to 42.5%, and the plasticity index decreases from 30.5 to 22.7% as the steel slag of 25% was added to expansive soil. With 25% steel slag content, specific gravity increases from 2.67 to 3.05. The free swell value decreased from 104.6 to 58.2%. From the Standard Proctor compaction test, maximum dry density increases from 1.504 to 1.69 g/cm3 and optimum moisture content decreases from 19.77 to 12.01 %. Unconfined compressive strength tests reveal that the addition of steel slag of 25% to expansive soil increases the unconfined compressive strength of the soil from 94.3 to 260.6 kPa. The California Bearing Ratio test also shows that the addition of steel slag by 25% increases the California Bearing ratio value from 3.64 to 6.82%. Hence, steel slag was found to be successfully improving the geotechnical properties of expansive soil.
Źródło:
Archives of Civil Engineering; 2023, 69, 1; 105--117
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improvement of a subgrade soil by using EarthZyme and cement kiln dust waste
Autorzy:
Abdulkareem, Ahmed Hazim
Eyada, Saadoon O.
Mahmood, Nabeel S.
Powiązania:
https://bibliotekanauki.pl/articles/1852537.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
stabilizacja gruntu
ściskanie nieskrępowane
EarthZyme
pył z pieca cementowego
nanomateriał
soil stabilization
unconfined compressions
cement kiln dust
nanomaterial
Opis:
Soil stabilization techniques are widely used for road construction to improve the properties of the subgrade materials. Using new additives and stabilizers to improve soil properties can reduce the costs of construction and reduce the possible negative effects of these materials on the environment. The purpose of this study was to evaluate the use of a liquid based nano-material called EarthZyme (EZ) and cement kiln dust (CKD) as admixtures to improve the soil properties. A mixture of two soils was used in this study which were prepared from mixing sand soil and fine-grained soil. Compaction tests were performed on the soil that was stabilized with the CKD to determine the density-water content relationships. Unconfined compression tests were also conducted on specimens without treatment, specimen treated with the CKD only, and specimens treated with the CKD and the EZ after curing period for seven days. The obtained results indicated that adding the CKD to the soil decreased the values of the unconfined compression strength (UCS) from 5 to 15 percent. However, adding the CKD reduced the maximum dry density (MDD) from 10 to 12 %. As discussed herein, soil stabilization with the EZ had insignificant effects on the results obtained from the unconfined compression test.
Źródło:
Archives of Civil Engineering; 2021, 67, 2; 525-536
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The development of an ecofriendly binder containing high volume of cement replacement by incorporating two by-product materials for the use in soil stabilization
Autorzy:
Jafer, Hassnen
Jawad, Ibtehaj
Majeed, Zaid
Shubbar, Ali
Powiązania:
https://bibliotekanauki.pl/articles/35522654.pdf
Data publikacji:
2021
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
soil stabilization
eco-friendly binder
ordinary Portland cement
ground granulated blast furnace slag
cement kiln dust
cement replacement
Opis:
The development of an ecofriendly binder containing high volume of cement replacement by incorporating two waste materials for the use in soil stabilization. This paper investigates the possibility of replacing ordinary Portland cement (OPC) by two waste and by-product materials for the use of a silty clay soil stabilization purpose. The soil was treated by 9.0% OPC where this mixture was used as a reference for all tests. Two by-product materials: ground granulated blast furnace slag and cement kiln dust were used as replacement materials. Consistency limits, compaction and unconfined compression strength (UCS) tests were conducted. Scanning electron microscopy (SEM) analysis was carried out for the proposed binder to investigate the reaction of products over curing time. Seven curing periods were adopted for all mixtures; 1, 3, 7, 14, 28, 52, and 90 days. The results showed that the strength development over curing periods after cement replacement up to 45–60% was closed to those of the reference specimens. The microphotographs of SEM analysis showed that the formation of Ettringite and Portladite as well as to calcium silicate hydrate gel was obvious at curing periods longer than 7 days reflected that the replacing materials succeed to produce the main products necessary for binder formation.
Źródło:
Scientific Review Engineering and Environmental Sciences; 2021, 30, 1; 62-74
1732-9353
Pojawia się w:
Scientific Review Engineering and Environmental Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sustainable soil stabilization using combination of geotextile, fly-ash and saw dust for pavement subgrade
Autorzy:
Sahak, A.
Singh, M.
Adhikari, A.
Hussain, S.
Powiązania:
https://bibliotekanauki.pl/articles/2175780.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
soil stabilization
sawdust
fly-ash
geotextile
unconfined compressive strength
stabilizacja gruntu
trociny
popiół lotny
geotekstylia
wytrzymałość na ściskanie
Opis:
Purpose: This paper investigates the combined effect of fly ash, sawdust and geotextile in stabilizing the soil. Design/methodology/approach: A thorough geotechnical testing was carried out in order to study the potent characteristics of soil and soil mixes. The present investigation was set up in two stages. In the first stage, effects of fly ash (5, 10, 15 and 20%), sawdust (2.5, 5 and 7.5%) and layers of geotextile placed at different depths were studied separately to determine their effect on soil stabilization. In the second stage, fly ash, sawdust and geotextile were mixed with soil sample in order to obtain the optimum dosage which can be used for stabilization of soil i.e. their combined effect as stabilizer on soil stabilization. Findings: It was observed that by introducing fly ash, sawdust and geotextile to the soil, the CBR values increase and thickness of pavement layer decreases. It also decreases the amount of stress on subgrade leading to enhancement of pavement stability with cost effectiveness. Research limitations/implications: Economical use of industrial waste has been proposed in the present research which otherwise prove to be a malady to climatic change and human health. From the study, an optimum dosage of fly ash (2.5%) and saw dust (5%) and depth for geotextile (6 cm) has been proposed. Originality/value: The article explores the possibility of a ternary blend, i.e., geotextile, fly-ash and saw dust on effectively stabilizing pavement subgrade. Limited literature was available to address the issue of utilizing the industrial wastes that otherwise pose disposal issues.
Źródło:
Archives of Materials Science and Engineering; 2021, 109, 1; 17--28
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pressure Settlement Behaviour and Bearing Capacity of Asymmetric Embedded Plus Shaped Footing on Layered Sand
Autorzy:
Rawat, Priyanka
Dutta, Rakesh Kumar
Powiązania:
https://bibliotekanauki.pl/articles/2051675.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
granulated blast furnace slag
soil stabilization
settlement
shaped footing
numerical investigations
żużel wielkopiecowy granulowany
stabilizacja gruntu
osiadanie
ława fundamentowa
badania numeryczne
Opis:
The aim of the present numerical study was to analyse the pressure settlement behaviour and bearing capacity of asymmetric plus shaped footing resting on loose sand overlying dense sand at varying embedment depth. The numerical investigation was carried out using ABAQUS software. The effect of depth of embedment, friction angle of upper loose and lower dense sand layer and thickness of upper loose sand on the bearing capacity of the asymmetric plus shaped footing was studied in this investigation. Further, the comparison of the results of the bearing capacity was made between the asymmetric and symmetric plus shaped footing. The results reveal that with increase in depth of embedment, the dimensionless bearing capacity of the footings increased. The highest increase in the dimensionless bearing capacity was observed at embedment ratio of 1.5. The increase in the bearing capacity was 12.62 and 11.40 times with respect to the surface footings F1 and F2 corresponding to a thickness ratio of 1.5. The lowest increase in the dimensionless bearing capacity was observed at embedment ratio of 0.1 and the corresponding increase in the bearing capacity was 1.05 and 1.02 times with respect to the surface footing for footings F1 and F2 at a thickness ratio of 1.5.
Źródło:
Civil and Environmental Engineering Reports; 2021, 31, 3; 152-176
2080-5187
2450-8594
Pojawia się w:
Civil and Environmental Engineering Reports
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effects of Waste Glass Powder on Subgrade Soil Improvement
Autorzy:
Javed, Syed Aaqib
Chakraborty, Sudipta
Powiązania:
https://bibliotekanauki.pl/articles/1030256.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
California Bearing Ratio (CBR)
Liquid Limit (LL)
Maximum Dry Density (MDD)
Optimum Moisture Content (OMC)
Plastic Limit (PL)
Soil Stabilization
Unconfined Compression Strength (UCS)
Waste Glass Powder
Opis:
The weak soil is largely distributed worldwide and creates problems in constructing pavements, roadways, structures, irrigation systems and foundation works due to low shear strength and bearing capacity. The ways of improving soil is known as soil stabilization. Various soil stabilization techniques are using but none of them are cost effective and environmentally friendly way. The present study aims to effect of soil stabilization with waste glass powder which will reduce the cost and is environmentally friendly. To investigate the effect of glass powder in cohesive soil different types of index and geotechnical engineering tests are conducted and compared with the virgin soil. Glass powder was mixed with the soil samples by 2%, 4%, 6%, 8% and 10% of dry weight of soil to conduct the tests and to determine the optimum percentage of glass powder. The Liquid Limit (LL), Plastic Limit (PL) and Plasticity Index (PI) continuously decreased and found 33.9%, 18.4% and 15.5% respectively at 10% of glass powder. Maximum dry density (MDD) was increasing and found constant and Optimum Moisture Content (OMC) was decreasing when added glass powder. The both Unsoaked and Soaked California Bearing Ratio (CBR) was increasing with the addition of glass powder and found maximum value 22.5% and 10.4% respectively. Unconfined compressive strength (UCS) was increasing up to 8% of glass powder and found to 133.5 KN/m2 and then decreased to 119.7 KN/m2 when added 10% of glass powder. Shear strength parameter also increases with the increase of glass powder. The study found that the optimum percentage of glass powder is 8% of dry weight of soil.
Źródło:
World Scientific News; 2020, 144; 30-42
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
FEM based analysis of wing wall to culvert connection
Autorzy:
Voitenko, P.
Anderson, J. B.
Powiązania:
https://bibliotekanauki.pl/articles/129216.pdf
Data publikacji:
2017
Wydawca:
PWB MEDIA Zdziebłowski
Tematy:
przepust
ściana skrzydłowa
analiza elementów skończonych
kryterium Mohra Coulomba
utwardzanie gruntu
ciśnienie gruntu
plaxis 3D
osiadanie nierównomierne
culvert
wing wall
finite element analysis
Mohr-Coulomb criterion
soil stabilization
earth pressure
non-uniform settlement
Opis:
As part of transportation systems, culverts are subjected to complex load conditions such as earth pressure and traffic live load. In addition, culverts may experience differential settlement of underlying soils, hydrostatic load, and aggradation/degradation scour. Combinations of these effects may cause crack formation or even structural failure. The objective of this paper is to study factors that lead to crack formation in the culvert-wing wall connection immediately after construction. Finite element models (FE) with Plaxis 3D software were used to analyze the stress distribution along the wing wall connection under different load scenarios and geometries. Mohr-Coulomb (MC) and Hardening soil (HS) non-linear material models were utilized. Tension stresses were occurred at the top of the wing wall as well as out of plane rotation away from the culvert, contributing to cracks as observed in the field.
Źródło:
Builder; 2017, 21, 11; 78-81
1896-0642
Pojawia się w:
Builder
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stabilization/Solidification of Waste Containing Heavy Metals and Hydrocarbons Using OPC and Land Trass Cement
Autorzy:
Masrullita, -
Burhan, R. Y. P.
Trihadiningrum, Y.
Powiązania:
https://bibliotekanauki.pl/articles/952442.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
trass soil
heavy metal
ordinary Portland cement
OPC
stabilization/solidification
Opis:
The stabilization/solidification process (S/S) is one of the alternative methods of treating B3 waste, especially heavy metal. The S/S uses cement as the solidification agent. The cement will bind heavy metal pollutants in a monolithic mass with a sturdy structure, thus inhibiting its movement. The presence of hydrocarbons affects the S/S strength. Therefore, it is necessary to add pozzolan material which can absorb hydrocarbon constituting the cement blocking component of pozzolan cement, i.e. Ordinary Portland Cement (OPC) combined with trass soil. This study aims to determine the maximum content of organic materials in the form of hydrocarbons can stabilize/solidify heavy metals contained in wastes containing hydrocarbons. This research is conducted in two steps. Stage I aims to obtain the optimum composition of the mixture. On the other hand, stage II is to determine the maximum content of hydrocarbons in percent weight that can stabilize/solidify organic wastes containing heavy metals – Cu, Cr, and Pb in artificial wastes. The composition of OPC and trass soil was varied at a ratio of 100: 0, 5:25, 50:50, 25:75 and 0: 100. The hydrocarbons used in step II were paraffin, added to the optimum composition of OPC and trass soil with a proportion of 2.5%, 5%, 5% and 10%. The S/S product quality test was performed, involving: compressive strength test, Toxicity Characteristic Leaching Procedure (TCLP) and paint filter test. Strength test was conducted using a compressive strength testing apparatus Toasters Universal Testing Machine Type RAT-200, MFG No. 20380 CAP 200 tf. TCLP test under US-EPA (method 1311). The method of analysis pertaining to heavy metal concentrations involved a colorimetric method for Cr (VI), neocuproine for Cu, and dithizone for Pb. The paint test refers to the US EPA 9095B method. The results showed that the optimum composition of OPC mixture: trass soil was 50:50, which is the composition used in stage II. The results of compressive strength test were 2770 tons/m2. The TCLP test results for heavy metals Cu and Pb with hydrocarbon addition on Cu 10% and Pb 2.5% reached 0.076 and 0.076 mg/L, respectively. The result of the paint filter test indicates that there is no remaining free fluid.
Źródło:
Journal of Ecological Engineering; 2018, 19, 6; 88-96
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies