Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "signal processing algorithms" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Improving energy compaction of a wavelet transform using genetic algorithm and fast neural network
Autorzy:
Stolarek, J.
Powiązania:
https://bibliotekanauki.pl/articles/964025.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
wavelet transform
neural networks
genetic algorithms
signal processing
lattice structure
Opis:
In this paper a new method for adaptive synthesis of a smooth orthogonal wavelet, using fast neural network and genetic algorithm, is introduced. Orthogonal lattice structure is presented. A new method of supervised training of fast neural network is introduced to synthesize a wavelet with desired energy distribution between output signals from low–pass and high–pass filters on subsequent levels of a Discrete Wavelet Transform. Genetic algorithm is proposed as a global optimization method for defined objective function, while neural network is used as a local optimization method to further improve the result. Proposed approach is tested by synthesizing wavelets with expected energy distribution between low– and high–pass filters. Energy compaction of proposed method and Daubechies wavelets is compared. Tests are performed using image signals.
Źródło:
Archives of Control Sciences; 2010, 20, 4; 417-433
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On-line process identification using the Modulating Functions Method and non-asymptotic state estimation
Autorzy:
Byrski, Witold
Drapała, Michał
Powiązania:
https://bibliotekanauki.pl/articles/2175109.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
system identification
modulating functions method
state observers
signal processing
adaptive algorithms
Opis:
The paper presents an iterative identification method dedicated for industrial processes. The method consists of two steps. In the first step, a MISO system is identified with the Modulating Functions Method to obtain sub-models with a common denominator. In the second step, the obtained subsystems are re-identified. This procedure enables to obtain the set of models with different denominators of the transfer functions. The algorithm was used for on-line identification of a glass conditioning process. Identification window is divided into intervals, in which the models can be updated based on recent process data, with the use of the integral state observer. Results of the performed simulations for the identified models are compared with the historical process data.
Źródło:
Archives of Control Sciences; 2022, 32, 3; 535--555
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
LMS Algorithm Step Size Adjustment for Fast Convergence
Autorzy:
Bismor, D.
Powiązania:
https://bibliotekanauki.pl/articles/177252.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
signal processing
adaptive algorithms
least mean squares
active noise control
system identification
Opis:
In the areas of acoustic research or applications that deal with not-precisely-known or variable condi- tions, a method of adaptation to the uncertainness or changes is usually necessary. When searching for an adaptation algorithm, it is hard to overlook the least mean squares (LMS) algorithm. Its simplicity, speed of computation, and robustness has won it a wide area of applications: from telecommunication, through acoustics and vibration, to seismology. The algorithm, however, still lacks a full theoretical analysis. This is probabely the cause of its main drawback: the need of a careful choice of the step size – which is the reason why so many variable step size flavors of the LMS algorithm has been developed. This paper contributes to both the above mentioned characteristics of the LMS algorithm. First, it shows a derivation of a new necessary condition for the LMS algorithm convergence. The condition, although weak, proved useful in developing a new variable step size LMS algorithm which appeared to be quite different from the algorithms known from the literature. Moreover, the algorithm proved to be effective in both simulations and laboratory experiments, covering two possible applications: adaptive line enhancement and active noise control.
Źródło:
Archives of Acoustics; 2012, 37, 1; 31-40
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
SPOT-GPR: A Freeware Toolfor Target Detection and Localizationin GPR Data Developedwithin the COST Action TU1208
Autorzy:
Meschino, S.
Pajewski, L.
Powiązania:
https://bibliotekanauki.pl/articles/308799.pdf
Data publikacji:
2017
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
Direction-of-Arrival algorithms
Ground-Penetrating Radar
matched filter technique
MUltiple SIgnal Classification (MUSIC)
Sub-Array Processing
Opis:
SPOT-GPR (release 1.0) is a new freeware tool implementing an innovative Sub-Array Processing method, for the analysis of Ground-Penetrating Radar (GPR) data with the main purposes of detecting and localizing targets. The software is implemented in Matlab, it has a graphical user interface and a short manual. This work is the outcome of a series of three Short-Term Scientific Missions (STSMs) funded by European COoperation in Science and Technology (COST) and carried out in the framework of the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar” (www.GPRadar.eu). The input of the software is a GPR radargram (B-scan). The radargram is partitioned in subradargrams, composed of a few traces (A-scans) each. The multi-frequency information enclosed in each trace is exploited and a set of dominant Directions of Arrival (DoA) of the electromagnetic field is calculated for each sub-radargram. The estimated angles are triangulated, obtaining a pattern of crossings that are condensed around target locations. Such pattern is filtered, in order to remove a noisy background of unwanted crossings, and is then processed by applying a statistical procedure. Finally, the targets are detected and their positions are predicted. For DoA estimation, the MUltiple SIgnal Classification (MUSIC) algorithm is employed, in combination with the matched filter technique. To the best of our knowledge, this is the first time the matched filter technique is used for the processing of GPR data. The software has been tested on GPR synthetic radargrams, calculated by using the finite-difference time-domain simulator gprMax, with very good results.
Źródło:
Journal of Telecommunications and Information Technology; 2017, 3; 43-54
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies