Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pattern extraction" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Iris identification method using only a section of the pattern
Autorzy:
Bobulski, J.
Powiązania:
https://bibliotekanauki.pl/articles/174981.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
biometrics
iris recognition
iris pattern extraction
Opis:
Iris based authentication methods are popular due to their reliability and dependability. This paper proposes the method of the iris recognition that instead uses only two fragments of the pattern. The presented method allows for a simpler iris extraction, as it does not use a complex conversion of an iris pattern from a circular to rectangular shape. The results obtained from this experiment show similarities to other previous ones. Importantly, the proposed method may be treated as an alternative solution. The experiment confirmed the validity of the concept for the proposed iris recognition method. Moreover, this method is quicker in comparison to the others. The additional merit of the proposed solution is the elimination of the distortion which comes from the eyelids and eyelashes at the beginning of the iris image processing. Moreover, this method does not require using additional techniques to eliminate disturbances.
Źródło:
Optica Applicata; 2018, 48, 1; 149-160
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Finger vein pattern extraction methods
Metody ekstrakcji układu naczyniowego
Autorzy:
Waluś, M.
Powiązania:
https://bibliotekanauki.pl/articles/151327.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
finger vein
pattern extraction
biometrics
układ naczyniowy
ekstrakcja cech
biometria
Opis:
In this paper the author presents techniques used for finger vein pattern extraction from raw biometric images. The proposition of a new image acquisition system is given. The main conclusion is the usability of image enhancement during acquisition process before taking the snapshot of a biometric probe. The proposed solution, compared to other techniques, improves the image quality and the overall effectiveness of the biometric system in the context of proper identification or verification.
W pracy przedstawiono metody wyodrębnienia wzorca układu naczyniowego palców dłoni z obrazów biometrycznych. Oprócz prezentacji najczęściej stosowanych metod przedstawiono prace autora w zakresie rozwoju nowego systemu akwizycji wzorców. W porównaniu do innych badań w tym zakresie skupiono się na zwiększeniu jakości obrazów poprzez lokalne dostrojenie jasności świecenia diod LED emitujących światło w zakresie widma bliskiej podczerwieni wykorzystywanych do oświetlenia palca w urządzeniu rejestrującym wzorce. Uzyskano obiecujące rezultaty polepszenia jakości obrazów głównie poprzez bardziej zróżnicowane uwidocznienie obszarów zajmowanych przez układ naczyniowy oraz pozostałe tkanki palca w porównaniu do innych metod. Obecnie trwają prace związane z ulepszeniem stworzonego prototypu urządzenia oraz prowadzone są konsultacje mające na celu określenie jego przydatność w diagnostyce medycznej.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 6, 6; 366-368
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determination of the Optimal Threshold Value and Number of Keypoints in Scale Invariant Feature Transform-based Copy-Move Forgery Detection
Autorzy:
Isnanto, R. Rizal
Zahra, Ajub Ajulian
Santoso, Imam
Lubis, Muhammad Salman
Powiązania:
https://bibliotekanauki.pl/articles/227299.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
forgery
Gaussian noise
feature extraction
pattern matching
Euclidean distance
Opis:
The copy-move forgery detection (CMFD) begins with the preprocessing until the image is ready to process. Then, the image features are extracted using a feature-transform-based extraction called the scale-invariant feature transform (SIFT). The last step is features matching using Generalized 2 Nearest-Neighbor (G2NN) method with threshold values variation. The problem is what is the optimal threshold value and number of keypoints so that copy-move detection has the highest accuracy. The optimal threshold value and number of keypoints had determined so that the detection n has the highest accuracy. The research was carried out on images without noise and with Gaussian noise.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 3; 561-569
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Novel framework for aspect knowledge base generated automatically from social media using pattern rules
Autorzy:
Tran, Tuan Anh
Duangsuwan, Jarunee
Wettayaprasit, Wiphada
Powiązania:
https://bibliotekanauki.pl/articles/2097963.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
opinion mining
aspect knowledge base
aspect extraction
pattern rules
social media
Opis:
One of the factors that improve businesses in business intelligence is summarization systems that can generate summaries based on sentiment from social media. However, these systems cannot produce such summaries automatically; they use annotated datasets. To support these systems with annotated datasets, we propose a novel framework that uses pattern rules. The framework has two procedures: 1) pre-processing, and 2) aspect knowledge-base generation. The first procedure is to check and correct any misspelled words (bigram and unigram) by a proposed method and tag the parts-of-speech of all of the words. The second procedure is to automatically generate an aspect knowledge base that is to be used to produce sentiment summaries by sentiment-summarization systems. Pattern rules and semantic similarity-based pruning are used to automatically generate an aspect knowledge base from social media. In the experiments, eight domains from benchmark datasets of reviews are used. The performance evaluation of our proposed approach shows the highest performance when compared to other unsupervised approaches.
Źródło:
Computer Science; 2021, 22 (4); 489--516
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Texture and gene expression analysis of the MRI brain in detection of Alzheimer’s disease
Autorzy:
Bustamam, A.
Sarwinda, D.
Ardenaswari, G.
Powiązania:
https://bibliotekanauki.pl/articles/91834.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
Alzheimer’s disease
MRI
Feature Extraction
Bi-Clustering
Local Binary Pattern
LBP
Opis:
Alzheimer’s disease is a type of dementia that can cause problems with human memory, thinking and behavior. This disease causes cell death and nerve tissue damage in the brain. The brain damage can be detected using brain volume, whole brain form, and genetic testing. In this research, we propose texture analysis of the brain and genomic analysis to detect Alzheimer’s disease. 3D MRI images were chosen to analyze the texture of the brain, and microarray data were chosen to analyze gene expression. We classified Alzheimer’s disease into three types: Alzheimer’s, Mild Cognitive Impairment (MCI), and Normal. In this study, texture analysis was carried out by using the Advanced Local Binary Pattern (ALBP) and the Gray Level Co-occurrence Matrix (GLCM). We also propose the bi-clustering method to analyze microarray data. The experimental results from texture analysis show that ALBP had better performance than GLCM in classification of Alzheimer’s disease. The ALBP method achieved an average value of accuracy of between 75% - 100% for binary classification of the whole brain data. Furthermore, Biclustering method with microarray data shows good performance gene expression, where this information show influence Alzheimer’s disease with total of bi-cluster is 6.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 2; 111-120
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Critical exponent analysis applied to surface EMG signals for multifunction myoelectric control
Autorzy:
Phinyomark, A.
Phothisonothai, M.
Phukpattaranont, P.
Limsakul, C.
Powiązania:
https://bibliotekanauki.pl/articles/220544.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
biomedical signal processing
electromyography signal
feature extraction
fractal analysis
human machine interface
pattern classification
Opis:
Based on recent advances in non-linear analysis, the surface electromyography (sEMG) signal has been studied from the viewpoints of self-affinity and complexity. In this study, we examine usage of critical exponent analysis (CE) method, a fractal dimension (FD) estimator, to study properties of the sEMG signal and to deploy these properties to characterize different movements for gesture recognition. SEMG signals were recorded from thirty subjects with seven hand movements and eight muscle channels. Mean values and coefficient of variations of the CE from all experiments show that there are larger variations between hand movement types but there is small variation within the same type. It also shows that the CE feature related to the self-affine property for the sEMG signal extracted from different activities is in the range of 1.855∼2.754. These results have also been evaluated by analysis-of-variance (p-value). Results show that the CE feature is more suitable to use as a learning parameter for a classifier compared with other representative features including root mean square, median frequency and Higuchi's method. Most p-values of the CE feature were less than 0.0001. Thus the FD that is computed by the CE method can be applied to be used as a feature for a wide variety of sEMG applications.
Źródło:
Metrology and Measurement Systems; 2011, 18, 4; 645-658
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rgb-D face recognition using LBP-DCT algorithm
Autorzy:
Kumar, Sunil B L
Kumari, Sharmila M
Powiązania:
https://bibliotekanauki.pl/articles/1956066.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
RGB-D
kinect
local binary pattern
pattern recognition
feature extraction
histogram
face recognition
lokalny wzorzec binarny
rozpoznawanie wzorców
wyodrębnianie cech
rozpoznawanie twarzy
Opis:
Face recognition is one of the applications in image processing that recognizes or checks an individual's identity. 2D images are used to identify the face, but the problem is that this kind of image is very sensitive to changes in lighting and various angles of view. The images captured by 3D camera and stereo camera can also be used for recognition, but fairly long processing times is needed. RGB-D images that Kinect produces are used as a new alternative approach to 3D images. Such cameras cost less and can be used in any situation and any environment. This paper shows the face recognition algorithms’ performance using RGB-D images. These algorithms calculate the descriptor which uses RGB and Depth map faces based on local binary pattern. Those images are also tested for the fusion of LBP and DCT methods. The fusion of LBP and DCT approach produces a recognition rate of 97.5% during the experiment
Źródło:
Applied Computer Science; 2021, 17, 3; 73-81
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Personal identification using retina
Autorzy:
Choraś, R.S.
Powiązania:
https://bibliotekanauki.pl/articles/333033.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
siatkówka
biometria siatkówki
wybór cech obrazu
retina
retina biometrics
vessel pattern
feature extraction
Gabor transform
feature vector
matching
Opis:
This paper proposes a biometric system for authentication that uses the retina blood vessel pattern. The retina biometric analyzes the layer of blood vessels located at the back of the eye. The blood vessels at the back of the eye have a unique pattern, from eye to eye and person to person. The retina, a layer of blood vessels located at the back of the eye, forms an identity card for the individual under investigation. In particular retinal recognition creates an ”eye signature” from its vascular configuration and its artificial duplication is thought to be virtually impossible.
Źródło:
Journal of Medical Informatics & Technologies; 2009, 13; 53-58
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cortical pattern detection for the developing brain: a 3D vertex labeling and skeletonization approach
Autorzy:
Clouchoux, C.
Kudelski, D.
Bouyssi-Kobar, M.
Viseur, S.
du Plessis, A.
Evans, A.
Mari, J.-L.
Limperopoulos, C.
Powiązania:
https://bibliotekanauki.pl/articles/333059.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozwój mózgu
ocena krzywizny
wychwytywanie cech
sulcal pattern
brain development
in-vivo MRI
cortical surface
curvature estimation
morphological operators
feature extraction
Opis:
Normal brain development is associated with expansion and folding of the cerebral cortex in a normal sequence of gyral–sulcal formation. We propose a global approach for measuring the cortical folding pattern of the developing brain. Our method measures geometric features directly on the cortical surface mesh, based on vertex labeling and skeletonization. The resulting extraction provides an accurate representation of global cortical organization. We applied this method to 17 young infants in order to characterize the evolution of cortical organization in the developing brain.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 16; 161-166
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies