Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "norm inequality" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates
Autorzy:
Luís Zani, Sérgio
Powiązania:
https://bibliotekanauki.pl/articles/1219073.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
norm inequality
weight
maximal function
homogeneous space
Opis:
Let D be an open subset of a homogeneous space(X,d,μ). Consider the maximal function $M_φ f(x) = sup1/φ(B) ʃ_{B∩∂D} |f|dν$, x∈ D, where the supremum is taken over all balls of the form B = B(a(x),r) with r > t(x) = d(x,∂D), a(x)∈ ∂D is such that d(a(x),x) < 3/2 t(x)$ and φ is a nonnegative set function defined for all Borel sets of X satisfying the quasi-monotonicity and doubling properties. We give a necessary and sufficient condition on the weights w and v for the weighted norm inequality (0.1) $(ʃ_D [M_φ(f)]^q wdμ)^{1/q} ≤ c(ʃ_{∂D} |f|^p vdν)^{1/p}$ to hold when 1 < p < q < ∞, $σdν = v^{1-p'}dν$ is a doubling weight, and dν is a doubling measure, and give a sufficient condition for (0.1) when 1 < p ≤ q < ∞ without assuming that σ is a doubling weight but with an extra assumption on φ. Another characterization for (0.1) is also provided for 1 < p ≤ q < ∞ and D of the form Y×(0,∞), where Y is a homogeneous space with group structure. These results generalize some known theorems in the case when $M_φ$ is the fractional maximal function in $ℝ^{n+1}_+$, that is, when $M_φ f(x,t) = M_γ f(x,t) = sup_{r>t} 1/(ν(B(x,r))^{1-γ}) ʃ_{B(x,r)} |f|dν$, where $(x,t) ∈ ℝ^{n+1}_+$, 0 < γ < 1, and ν is a doubling measure in $ℝ^n$.
Źródło:
Studia Mathematica; 1997, 126, 1; 67-94
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weak type estimates for operators of potential type
Autorzy:
Wheeden, Richard L.
Zhao, Shiying
Powiązania:
https://bibliotekanauki.pl/articles/1287570.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
norm inequality
weight
operator of potential type
homogeneous space
Opis:
We derive two-weight weak type estimates for operators of potential type in homogeneous spaces. The conditions imposed on the weights are testing conditions of the kind first studied by E. T. Sawyer [4]. We also give some applications to strong type estimates as well as to operators on half-spaces.
Źródło:
Studia Mathematica; 1996, 119, 2; 149-160
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A variant sharp estimate for multilinear singular integral operators
Autorzy:
Hu, Guoen
Yang, Dachun
Powiązania:
https://bibliotekanauki.pl/articles/1206036.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
multilinear singular integral operator
BMO
weighted norm inequality
sharp estimate
Opis:
We establish a variant sharp estimate for multilinear singular integral operators. As applications, we obtain the weighted norm inequalities on general weights and certain $Llog^{+}L$ type estimates for these multilinear operators.
Źródło:
Studia Mathematica; 2000, 141, 1; 25-22
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Convolutions, integral transforms and integral equations by means of the theory of reproducing kernels
Autorzy:
Castro, L. P.
Saitoh, S.
Tuan, N. M.
Powiązania:
https://bibliotekanauki.pl/articles/256011.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Hilbert space
linear transform
reproducing kernel
linear mapping
convolution
norm inequality
integral equation
Tikhonov regularization
Opis:
This paper introduces a general concept of convolutions by means of the theory of reproducing kernels which turns out to be useful for several concrete examples and applications. Consequent properties are exposed (including, in particular, associated norm inequalities).
Źródło:
Opuscula Mathematica; 2012, 32, 4; 633-646
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal factors in Vladimir Markovs inequality in L2 norm
Autorzy:
Baran, M.
Kowalska, A.
Ozorka, P.
Powiązania:
https://bibliotekanauki.pl/articles/93076.pdf
Data publikacji:
2018
Wydawca:
Państwowa Wyższa Szkoła Zawodowa w Tarnowie
Tematy:
Markov inequality
L2 norm
nierówność Markowa
norma L2
Opis:
In this paper we discuss a problem of computation of constants in Vladimir Markov's type inequality in L2 norm on the interval [-1, 1].
Źródło:
Science, Technology and Innovation; 2018, 2, 1; 64-73
2544-9125
Pojawia się w:
Science, Technology and Innovation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Vladimir Markov type inequality in Lp norms on the interval [-1; 1]
Autorzy:
Baran, Mirosław
Ozorka, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/93082.pdf
Data publikacji:
2019
Wydawca:
Państwowa Wyższa Szkoła Zawodowa w Tarnowie
Tematy:
Vladimir Markov type inequality
Lp-norm
nierówności typu Władimira Markowa
norma Lp
Opis:
We prove inequality ||P(k)||Lp(-1;1)≤Bp||Tn(k)||Lp(-1;1)n^(2/p) ||P||Lp(-1;1); where Bp are constants independent of n = deg P with 1 ≤ p ≤ 2, which is sharp in the case k ≥ 3. A method presented in this note is based on a factorization of linear operator of k-th derivative throughout normed spaces of polynomial equipped with a Wiener type norm.
Źródło:
Science, Technology and Innovation; 2019, 7, 4; 9-12
2544-9125
Pojawia się w:
Science, Technology and Innovation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm
Autorzy:
Matkowski, Janusz
Pycia, Marek
Powiązania:
https://bibliotekanauki.pl/articles/1311612.pdf
Data publikacji:
1995
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
functional inequality
subadditive functions
homogeneous functions
Banach functionals
convex functions
linear space
cones
measure space
integrable step functions
$L^p$-norm
Minkowski's inequality
Opis:
Let a and b be fixed real numbers such that 0 < min{a,b} < 1 < a + b. We prove that every function f:(0,∞) → ℝ satisfying f(as + bt) ≤ af(s) + bf(t), s,t > 0, and such that $limsup_{t → 0+} f(t) ≤ 0$ must be of the form f(t) = f(1)t, t > 0. This improves an earlier result in [5] where, in particular, f is assumed to be nonnegative. Some generalizations for functions defined on cones in linear spaces are given. We apply these results to give a new characterization of the $L^p$-norm.
Źródło:
Annales Polonici Mathematici; 1994-1995, 60, 3; 221-230
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Conjugate functions, lp-norm like functionals, the generalized Hölder inequality, Minkowski inequality and subhomogeneity
Autorzy:
Matkowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/255030.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Lp-norm like functional
homogeneity
subhomogeneity
subadditivity
Minkowski inequality
Hölder inequality
converses
generalization of the Minkowski and Hölder inequalities
conjugate functions
complementary functions
Young conjugate functions
convex function
geometrically convex function
Wright convex function
functional equation
Opis:
For h : (0,∞) → R, the function h* (t) := th( 1/t ) is called (*)-conjugate to h. This conjugacy is related to the Hölder and Minkowski inequalities. Several properties of (*)-conjugacy are proved. If φ and φ* are bijections of (0,∞) then [formula]. Under some natural rate of growth conditions at 0 and ∞, if φ is increasing, convex, geometrically convex, then [formula] has the same properties. We show that the Young conjugate functions do not have this property. For a measure space (Ω,Σ,μ) denote by S = (Ω,Σ,μ) the space of all μ-integrable simple functions x : Ω → R, Given a bijection φ : (0,∞) → (0,∞) define [formula] by [formula] where Ω(x) is the support of x. Applying some properties of the (*) operation, we prove that if ƒ xy ≤ Pφ(x)Pψ (y) where [formula] and [formula] are conjugate, then φ and ψ are conjugate power functions. The existence of nonpower bijections φ and ψ with conjugate inverse functions [formula] such that Pφ and Pψ are subadditive and subhomogeneous is considered.
Źródło:
Opuscula Mathematica; 2014, 34, 3; 523-560
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the exponential Orlicz norms of stopped Brownian motion
Autorzy:
Peškir, Goran
Powiązania:
https://bibliotekanauki.pl/articles/1288072.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Brownian motion (Wiener process)
stopping time
exponential Young function
exponential Orlicz norm
Doob's maximal inequality for martingales
Burkholder-Gundy's inequality
Davis' best constants
Hermite polynomial
continuous (local) martingale
Ito's integral
the quadratic variation process
time change (of Brownian motion)
Kahane-Khinchin's inequalities
Opis:
Necessary and sufficient conditions are found for the exponential Orlicz norm (generated by $ψ_p(x) = exp(|x|^p)-1$ with 0 < p ≤ 2) of $max_{0≤t≤τ}|B_t|$ or $|B_τ|$ to be finite, where $B = (B_t)_{t≥0}$ is a standard Brownian motion and τ is a stopping time for B. The conditions are in terms of the moments of the stopping time τ. For instance, we find that $∥max_{0≤t≤τ}|B_t|∥_{ψ_1} < ∞$ as soon as $E(τ^{k}) = O(C^{k}k^{k})$ for some constant C > 0 as k → ∞ (or equivalently $∥τ∥_{ψ_1} < ∞$). In particular, if τ ∼ Exp(λ) or $|N(0,σ^2)|$ then the last condition is satisfied, and we obtain $∥max_{0≤t≤τ}|B_t|∥_{ψ_1} ≤ K √{E(τ)}$ with some universal constant K > 0. Moreover, this inequality remains valid for any class of stopping times τ for B satisfying $E(τ^{k}) ≤ C(Eτ)^{k}k^{k}$ for all k ≥ 1 with some fixed constant C > 0. The method of proof relies upon Taylor expansion, Burkholder-Gundy's inequality, best constants in Doob's maximal inequality, Davis' best constants in the $L^p$-inequalities for stopped Brownian motion, and estimates of the smallest and largest positive zero of Hermite polynomials. The results extend to the case of any continuous local martingale (by applying the time change method of Dubins and Schwarz).
Źródło:
Studia Mathematica; 1995-1996, 117, 3; 253-273
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies