Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "non-functional requirements" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Mining Non-Functional Requirements using Machine Learning Techniques
Autorzy:
Jindal, Rajni
Malhotra, Ruchika
Jain, Abha
Bansal, Ankita
Powiązania:
https://bibliotekanauki.pl/articles/2060908.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
requirement engineering
text mining
non-functional requirements
machine learning
receiver operating characteristics
Opis:
Background: Non-Functional Requirements (NFR) have a direct impact on the architecture of the system, thus it is essential to identify NFRs in the initial phases of software development. Aim: The work is based on extraction of relevant keywords from NFR descriptions by employing text mining steps and thereafter classifying these descriptions into one of the nine types of NFRs. Method: For each NFR type, keywords are extracted from a set of pre-categorized specifications using Information-Gain measure. Then models using 8 Machine Learning (ML) techniques are developed for classification of NFR descriptions. A set of 15 projects (containing 326 NFR descriptions) developed by MS students at DePaul University are used to evaluate the models. Results: The study analyzes the performance of ML models in terms of classification and misclassification rate to determine the best model for predicting each type NFR descriptions. The Naïve Bayes model has performed best in predicting “maintainability” and “availability” type of NFRs. Conclusion: The NFR descriptions should be analyzed and mapped into their corresponding NFR types during the initial phases. The authors conducted cost benefit analysis to appreciate the advantage of using the proposed models.
Źródło:
e-Informatica Software Engineering Journal; 2021, 15, 1; 85--114
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System performance requirements: A standards-based model for early identification, allocation to software functions and size measurement
Autorzy:
Al-Sarayreh, Khalid T.
Meridji, Kenza
Abran, Alain
Trudel, Sylvie
Powiązania:
https://bibliotekanauki.pl/articles/384087.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
non-functional requirements
NFR
performance requirements
international standards
Softgoal Interdependency Graphs
SIGs
COSMIC-FSM
COSMIC-SOA
Opis:
Background: In practice, the developers focus is on early identification of the functional requirements (FR) allocated to software, while the system non-functional requirements (NFRs) are left to be specified and detailed much later in the development lifecycle. Aim: A standards-based model of system performance NFRs for early identification and measurement of FR-related performance of software functions. Method: 1) Analysis of performance NFR in IEEE and ECSS standards and the modeling of the identified system/software performance functions using Softgoal Interdependency Graphs. 2) Application of the COSMIC-FSM method (e.g., ISO 19761) to measure the functional size of the performance requirements allocated to software functions. 3) Use of the COSMIC-SOA guideline to tailor this framework to service-oriented architecture (SOA) for performance requirements specification and measurement. 4) Illustration of the applicability of the proposed approach for specification and measurement of system performance NFR allocated to the software for an automated teller machine (ATM) in an SOA context. Results: A standards-based framework for identifying, specifying and measuring NFR system performance of software functions. Conclusion: Such a standards-based system performance reference framework at the function and service levels can be used early in the lifecycle by software developers to identify, specify and measure performance NFR.
Źródło:
e-Informatica Software Engineering Journal; 2020, 14, 1; 117-148
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies