Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multispectral image" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Assessing the accuracy of the pixel-based algorithms in classifying the urban land use, using the multi spectral image of the IKONOS satellite (Case study, Uromia city)
Autorzy:
Safaralizade, E.
Husseinzade, R.
Pashazade, G.
Khosravi, B.
Powiązania:
https://bibliotekanauki.pl/articles/11078.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
pixel-based algorithm
urban land
land use
multispectral image
IKONOS satellite
classification
urbanization
urban planning
Uromia city
Opis:
With the development of urbanization and expansion of urban land use, the need to up to date maps, has drawn the attention of the urban planners. With the advancement of the remote sensing technology and accessibility to images with high resolution powers, the classification of these land uses could be executed in different ways. In the current research, different algorithms for classifying the pixel-based were tested on the land use of the city of Urmia, using the multi spectral images of the IKONOS satellite. Here, in this method, the algorithms of the supervised classification of the maximum likelihood, minimum distance to mean and parallel piped were executed on seven land use classes. Results obtained using the error matrix indicated that the algorithm for classifying the maximum likelihood has an overall accuracy of 88/93 % and the Kappa coefficient of 0/86 while for the algorithms of minimum distance to mean and parallel piped , the overall accuracy are 05/79 % and 40/70 % respectively. Also, the accuracy of the producer and that of the user in most land use classes in the method of maximum likelihood are higher compared to the other algorithms.
Źródło:
International Letters of Natural Sciences; 2014, 06
2300-9675
Pojawia się w:
International Letters of Natural Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Low-cost thermal scanner image enhancement by merging thermal and visual data
Autorzy:
Olbrycht, R.
Militowski, S.
Powiązania:
https://bibliotekanauki.pl/articles/114113.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
thermal scanner
multispectral
edge detection
thermal camera
image processing
Opis:
This paper demonstrates the application of different image processing techniques to process high resolution visual images and merge it with low resolution thermograms to improve its level of detail. The same idea is applied in commercially available thermal cameras (e.g. FLIR with MSX® technology). Low resolution thermograms considered in this paper were obtained from a thermal scanner with point infrared detector (Fig. 1) sensitive to long wavelength infrared spectral range. The proposed algorithms are Laplacian, Sobel operator, embossing and Gaussian differential blur (described in section 3). The authors processed 6 different thermograms to qualitatively assess obtained results. It was done in a statistical manner through a survey and revealed that both Sobel operator and embossing provided the most clear, detailed and unambiguous results (Fig. 5). Such algorithms may be applied for processing more channels in a multispectral, cost-effective system.
Źródło:
Measurement Automation Monitoring; 2015, 61, 6; 184-186
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection of human eye components on the basis of multispectral imaging
Autorzy:
Michalak, M.
Nurzyńska, K.
Świtoński, A.
Powiązania:
https://bibliotekanauki.pl/articles/333415.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie wzorców
analiza wielospektralna
przetwarzanie obrazów
segmentacja obrazu
pattern recognition
multispectral analysis
image processing
image segmentation
Opis:
In this paper the methods for selecting of the most important parts of the human eyes are described. On the basis of the real 21 channel multispectral images the model of finding the lens and the spot are defined. These methods are based on the most popular algorithms of image processing. The approach to veins detection is still undefined but in the article the most important channels are pointed out and the channel difference between eyelash and the veins is also mentioned.
Źródło:
Journal of Medical Informatics & Technologies; 2012, 19; 41-47
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fast multispectral deep fusion networks
Autorzy:
Osin, V.
Cichocki, A.
Burnaev, E.
Powiązania:
https://bibliotekanauki.pl/articles/200648.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
multispectral imaging
data fusion
deep learning
convolutional network
object detection
image segmentation
obrazowanie wielospektralne
fuzja danych
uczenie głębokie
sieci splotowe
wykrywanie obiektów
segmentacja obrazu
Opis:
Most current state-of-the-art computer vision algorithms use images captured by cameras, which operate in the visible spectral range as input data. Thus, image recognition systems that build on top of those algorithms can not provide acceptable recognition quality in poor lighting conditions, e.g. during nighttime. Another significant limitation of such systems is high demand for computational resources, which makes them impossible to use on low-powered embedded systems without GPU support. This work attempts to create an algorithm for pattern recognition that will consolidate data from visible and infrared spectral ranges and allow near real-time performance on embedded systems with infrared and visible sensors. First, we analyze existing methods of combining data from different spectral ranges for object detection task. Based on the analysis, an architecture of a deep convolutional neural network is proposed for the fusion of multi-spectral data. This architecture is based on the single shot multi-box detection algorithm. Comparison analysis of the proposed architecture with previously proposed solutions for the multi-spectral object detection task shows comparable or better detection accuracy with previous algorithms and significant improvement of the running time on embedded systems. This study was conducted in collaboration with Philips Lighting Research Lab and solutions based on the proposed architecture will be used in image recognition systems for the next generation of intelligent lighting systems. Thus, the main scientific outcomes of this work include an algorithm for multi-spectral pattern recognition based on convolutional neural networks, as well as a modification of detection algorithms for working on embedded systems.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 875-889
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies