Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mixed data" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Decision-making enhancement in a big data environment : application of the K-means algorithm to mixed data
Autorzy:
Koren, Oded
Hallin, Carina Antonia
Perel, Nir
Bendet, Dror
Powiązania:
https://bibliotekanauki.pl/articles/91712.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
big data
mixed data
hadoop
K-means
decision making
Opis:
Big data research has become an important discipline in information systems research. However, the flood of data being generated on the Internet is increasingly unstructured and non-numeric in the form of images and texts. Thus, research indicates that there is an increasing need to develop more efficient algorithms for treating mixed data in big data for effective decision making. In this paper, we apply the classical K-means algorithm to both numeric and categorical attributes in big data platforms. We first present an algorithm that handles the problem of mixed data. We then use big data platforms to implement the algorithm, demonstrating its functionalities by applying the algorithm in a detailed case study. This provides us with a solid basis for performing more targeted profiling for decision making and research using big data. Consequently, the decision makers will be able to treat mixed data, numerical and categorical data, to explain and predict phenomena in the big data ecosystem. Our research includes a detailed end-to-end case study that presents an implementation of the suggested procedure. This demonstrates its capabilities and the advantages that allow it to improve the decision-making process by targeting organizations’ business requirements to a specific cluster[s]/profiles[s] based on the enhancement outcomes.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 4; 293-302
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Small Area Estimation Under a Mixture Model
Autorzy:
Chandra, Hukum
Bathla, HVL
Sud, U.C.
Powiązania:
https://bibliotekanauki.pl/articles/465788.pdf
Data publikacji:
2010
Wydawca:
Główny Urząd Statystyczny
Tematy:
Linear mixed model
Small area estimation
EBLUP
Zero-inflated data
mixture model
Opis:
Small area estimation (SAE) under a linear mixed model may not be efficient if data contain substantial proportion of zeros than would be expected under standard model assumptions (hereafter zero-inflated data). We discuss the SAE for zero-inflated data under a mixture model (Fletcher et al., 2005 and Karlberg, 2000) that account for excess zeros in the data. Our results from simulation studies show that mixture model based approach for SAE works well and produces an efficient set of small area estimates. An application to real survey data from the National Sample Survey Organisation of India demonstrates the satisfactory performance of the approach.
Źródło:
Statistics in Transition new series; 2010, 11, 3; 76-89
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of mixed network processes with shared inputs and undesirable factors
Autorzy:
Nematizadeh, Maryam
Amirteimoori, Alireza
Kordrostami, Sohrab
Vaez-Ghasemi, Mohsen
Powiązania:
https://bibliotekanauki.pl/articles/406305.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
network data envelopment analysis
parallel-series mixed networks
weak disposability
undesirable factors
ranking
Opis:
In the real world, there are processes whose structures are like a parallel-series mixed network. Network data envelopment analysis (NDEA) is one of the appropriate methods for assessing the performance of processes with these structures. In the paper, mixed processes with two parallel and series components are considered, in which the first component or parallel section consists of the shared inputs, and the second component or series section consists of undesirable factors. By considering the weak disposability assumption for undesirable factors, a DEA approach as based on network slackbased measure (NSBM) is introduced to evaluate the performance of processes with mixed structures. The proposed model is illustrated with a real case study. Then, the model is developed to discriminate efficient units.
Źródło:
Operations Research and Decisions; 2020, 30, 1; 97-118
2081-8858
2391-6060
Pojawia się w:
Operations Research and Decisions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Percentile-Adjusted Estimation of Poverty Indicators for Domains Under Outlier Contamination
Autorzy:
Veijanen, Ari
Lehtonen, Risto
Powiązania:
https://bibliotekanauki.pl/articles/466042.pdf
Data publikacji:
2011
Wydawca:
Główny Urząd Statystyczny
Tematy:
small area estimation
poverty indicator
income data
bias correction
auxiliary information
mixed model
prediction
Opis:
Traditional estimation of poverty and inequality indicators, such as the Gini coefficient, for regions does not currently use auxiliary information or models fitted to income survey data. A predictor-type estimator constructed from ordinary mixed model predictions is not necessarily useful, as the predictions have too small spread for estimation of income statistics. Ordinary bias corrections are aimed at correcting the expectation of predictions, but poverty indicators would not be affected at all by a correction involving multiplication of predictions. We need a method improving the shape of the distribution of predictions, as poverty indicators describe differences of income between people. We therefore introduce a transformation bringing the percentiles of transformed predictions closer to the percentiles of sample values. The experiments show that the transformation results in smaller MSE of a predictor. If unit-level data from population are not available, the marginal domain frequencies of qualitative auxiliary variables can be successfully incorporated into a new calibration-based predictor-type estimator. The results are based on design-based simulation experiments where we use a population generated from an EU-wide income survey. The study is a part of the AMELI project funded by the European Union under the Seventh Framework Programme for research and technological development (FP7).
Źródło:
Statistics in Transition new series; 2011, 12, 2; 345-356
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies