Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "metoda jądrowa" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Kernel Ho-Kashyap classifier with generalization control
Autorzy:
Łęski, J.
Powiązania:
https://bibliotekanauki.pl/articles/907269.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
metoda jądrowa
metoda odporna
projekt klasyfikatora
kernel methods
classifier design
Ho-Kashyap classifier
generalization control
robust methods
Opis:
This paper introduces a new classifier design method based on a kernel extension of the classical Ho-Kashyap procedure. The proposed method uses an approximation of the absolute error rather than the squared error to design a classifier, which leads to robustness against outliers and a better approximation of the misclassification error. Additionally, easy control of the generalization ability is obtained using the structural risk minimization induction principle from statistical learning theory. Finally, examples are given to demonstrate the validity of the introduced method.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 1; 53-61
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Empirical and Kernel Estimation of the ROC Curve
EMPIRYCZNY I JĄDROWY ESTYMATOR KRZYWEJ ROC
Autorzy:
Baszczyńska, Aleksandra Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/654315.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
krzywa ROC curve
empiryczny estymator
metoda jądrowa
parametr wygładzania
funkcja jądra
ROC curve
empirical estimator
kernel method
smoothing parameter
kernel function
Opis:
W pracy rozważane są wybrane metody estymacji krzywej ROC (Receiver Operating Characteristic), w tym metody parametryczne i nieparametryczne. Podejście nieparametryczne może oznaczać zastosowanie empirycznego estymatora krzywej ROC lub  estymatora jądrowego. Podjęta jest próba porównania estymacji empirycznej oraz jądrowej ze szczególnym uwzględnieniem wpływu liczebności próby, jak również metody wyboru parametru wygładzania i funkcji jądra na rezultat procedury estymacyjnej. W oparciu o wyniki badania symulacyjnego określone są wskazówki użyteczne w procedurach estymacji krzywej ROC.
The paper presents chosen methods for estimating the ROC (Receiver Operating Characteristic) curve, including parametric and nonparametric procedures. Nonparametric  approach may involve the use of empirical method or kernel method of the ROC curve estimation. In the analysis, an attempt of comparison of empirical and kernel ROC estimators is done, considering the impact of sample size, choice of smoothing parameter and kernel function in kernel estimation on the results of the estimation. Based on the results of simulation studies, some suggestions, useful in the procedures of nonparametric ROC curve are determined.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2015, 1, 311
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of prototype selection algorithms used in construction of neural networks learned by SVD
Autorzy:
Jankowski, N.
Powiązania:
https://bibliotekanauki.pl/articles/330020.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
radial basis function network
extreme learning machine
kernel method
prototype selection
machine learning
k nearest neighbours
radialna funkcja bazowa
metoda jądrowa
uczenie maszynowe
metoda k najbliższych sąsiadów
Opis:
Radial basis function networks (RBFNs) or extreme learning machines (ELMs) can be seen as linear combinations of kernel functions (hidden neurons). Kernels can be constructed in random processes like in ELMs, or the positions of kernels can be initialized by a random subset of training vectors, or kernels can be constructed in a (sub-)learning process (sometimes by k-means, for example). We found that kernels constructed using prototype selection algorithms provide very accurate and stable solutions. What is more, prototype selection algorithms automatically choose not only the placement of prototypes, but also their number. Thanks to this advantage, it is no longer necessary to estimate the number of kernels with time-consuming multiple train-test procedures. The best results of learning can be obtained by pseudo-inverse learning with a singular value decomposition (SVD) algorithm. The article presents a comparison of several prototype selection algorithms co-working with singular value decomposition-based learning. The presented comparison clearly shows that the combination of prototype selection and SVD learning of a neural network is significantly better than a random selection of kernels for the RBFN or the ELM, the support vector machine or the kNN. Moreover, the presented learning scheme requires no parameters except for the width of the Gaussian kernel.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 4; 719-733
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ranking of low-carbon energy technologies in the context of the degree of achievement of sustainable development objectives – Multi Criteria Decision Analysis (MCDA) approach
Ranking technologii energetyki niskoemisyjnej w kontekście stopnia realizacji celów zrównoważonego rozwoju – badanie z zastosowaniem metody wielokryterialnej (MCDA)
Autorzy:
Ligus, M.
Powiązania:
https://bibliotekanauki.pl/articles/397210.pdf
Data publikacji:
2017
Wydawca:
ENERGA
Tematy:
low-carbon energy sources
renewable energy sources
nuclear power
Delphi method
multi-criteria decision analysis
sustainable development
niskoemisyjne źródła energii
odnawialne źródła energii
energetyka jądrowa
metoda delficka
metoda wielokryterialna
rozwój zrównoważony
Opis:
The author’s focus is on assessing the extent to which five low-carbon energy technologies with the highest market potential can contribute to increased social well-being within the concept of sustainable development. Heuristic methods are used. Relevant criteria in the areas of economy, society, and the environment are identified by the Delphi method. An expert survey was then conducted to obtain a ranking of the energy technologies. Experts weighted the importance of individual areas and criteria, and then assessed the strength and direction of the impact of each technology on the identified criteria in three areas. The results have shown that renewable energy technologies clearly prevail over nuclear power in achieving the sustainable development goals. The best in this respect among renewable energy sources are photovoltaics, followed by biomass and biogas. Onshore and offshore wind farms were ranked third and fourth, respectively.
W centrum zainteresowania autora jest ocena stopnia, w jakim pięć technologii energetyki niskoemisyjnej, mających największy potencjał rynkowy, może przyczynić się do wzrostu dobrobytu społecznego w rozumieniu koncepcji zrównoważonego rozwoju. Stosowane są metody heurystyczne. Identyfikacja istotnych kryteriów w obszarach: gospodarka, społeczeństwo, środowisko, została przeprowadzona metodą delficką. Następnie przeprowadzono badanie ankietowe eksperckie w celu uzyskania rankingu technologii energetycznych. Eksperci nadawali wagi poszczególnym obszarom oraz kryteriom, a następnie oceniali siłę i kierunek wpływu poszczególnych technologii na zidentyfikowane kryteria w ramach trzech obszarów. Wyniki wskazują, że technologie energii odnawialnej wykazują zdecydowaną przewagę nad energetyką jądrową w realizacji celów polityki zrównoważonego rozwoju. Wśród odnawialnych źródeł energii pierwsze miejsce zajmuje fotowoltaika, następnie biomasa i biogaz. Energetyka wiatrowa lądowa i morska zajmują odpowiednio – trzecie i czwarte miejsce.
Źródło:
Acta Energetica; 2017, 3; 136-141
2300-3022
Pojawia się w:
Acta Energetica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A complete gradient clustering algorithm formed with kernel estimators
Autorzy:
Kulczycki, P.
Charytanowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/907781.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
analiza danych
eksploracja danych
grupowanie
metoda statystyczna
estymacja jądrowa
obliczenia numeryczne
data analysis
data mining
clustering
gradient procedures
nonparametric statistical methods
kernel estimators
numerical calculations
Opis:
The aim of this paper is to provide a gradient clustering algorithm in its complete form, suitable for direct use without requiring a deeper statistical knowledge. The values of all parameters are effectively calculated using optimizing procedures. Moreover, an illustrative analysis of the meaning of particular parameters is shown, followed by the effects resulting from possible modifications with respect to their primarily assigned optimal values. The proposed algorithm does not demand strict assumptions regarding the desired number of clusters, which allows the obtained number to be better suited to a real data structure. Moreover, a feature specific to it is the possibility to influence the proportion between the number of clusters in areas where data elements are dense as opposed to their sparse regions. Finally, the algorithm-by the detection of one-element clusters-allows identifying atypical elements, which enables their elimination or possible designation to bigger clusters, thus increasing the homogeneity of the data set.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 1; 123-134
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies