Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "maximal independent set" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The hardness of the independence and matching clutter of a graph
Autorzy:
Hambardzumyan, S.
Mkrtchyan, V. V.
Musoyan, V. L.
Sargsyan, H.
Powiązania:
https://bibliotekanauki.pl/articles/952814.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
clutter
hardness
independent set
maximal independent set
matching
maximal matching
Opis:
A clutter (or antichain or Sperner family) L is a pair (V, E), where V is a finite set and E is a family of subsets of V none of which is a subset of another. Usually, the elements of V are called vertices of L, and the elements of E are called edges of L. A subset se of an edge e of a clutter is called recognizing for e, if se is not a subset of another edge. The hardness of an edge e of a clutter is the ratio of the size of e's smallest recognizing subset to the size of e. The hardness of a clutter is the maximum hardness of its edges. We study the hardness of clutters arising from independent sets and matchings of graphs.
Źródło:
Opuscula Mathematica; 2016, 36, 3; 375-397
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Arithmetically maximal independent sets in infinite graphs
Autorzy:
Bylka, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/744334.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
infinite graph
independent set
arithmetical maximal set
line graph
Opis:
Families of all sets of independent vertices in graphs are investigated. The problem how to characterize those infinite graphs which have arithmetically maximal independent sets is posed. A positive answer is given to the following classes of infinite graphs: bipartite graphs, line graphs and graphs having locally infinite clique-cover of vertices. Some counter examples are presented.
Źródło:
Discussiones Mathematicae Graph Theory; 2005, 25, 1-2; 167-182
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies