Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hybrid feature selection" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A contemporary multi-objective feature selection model for depression detection using a hybrid pBGSK optimization algorithm
Autorzy:
Kavi Priya, Santhosam
Pon Karthika, Kasirajan
Powiązania:
https://bibliotekanauki.pl/articles/2201021.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
depression detection
text classification
dimensionality reduction
hybrid feature selection
wykrywanie depresji
klasyfikacja tekstu
redukcja wymiarowości
wybór funkcji
Opis:
Depression is one of the primary causes of global mental illnesses and an underlying reason for suicide. The user generated text content available in social media forums offers an opportunity to build automatic and reliable depression detection models. The core objective of this work is to select an optimal set of features that may help in classifying depressive contents posted on social media. To this end, a novel multi-objective feature selection technique (EFS-pBGSK) and machine learning algorithms are employed to train the proposed model. The novel feature selection technique incorporates a binary gaining-sharing knowledge-based optimization algorithm with population reduction (pBGSK) to obtain the optimized features from the original feature space. The extensive feature selector (EFS) is used to filter out the excessive features based on their ranking. Two text depression datasets collected from Twitter and Reddit forums are used for the evaluation of the proposed feature selection model. The experimentation is carried out using naive Bayes (NB) and support vector machine (SVM) classifiers for five different feature subset sizes (10, 50, 100, 300 and 500). The experimental outcome indicates that the proposed model can achieve superior performance scores. The top results are obtained using the SVM classifier for the SDD dataset with 0.962 accuracy, 0.929 F1 score, 0.0809 log-loss and 0.0717 mean absolute error (MAE). As a result, the optimal combination of features selected by the proposed hybrid model significantly improves the performance of the depression detection system.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 1; 117--131
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A machine learning method for soil conditioning automated decision-making of EPBM : hybrid GBDT and Random Forest Algorithm
Autorzy:
Lin, Lin
Guo, Hao
Lv, Yancheng
Liu, Jie
Tong, Changsheng
Yang, Shuqin
Powiązania:
https://bibliotekanauki.pl/articles/2087007.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
soil conditioning
automated decision-making
hybrid algorithm
geological parameters
drive parameters
feature selection
Opis:
There lacks an automated decision-making method for soil conditioning of EPBM with high accuracy and efficiency that is applicable to changeable geological conditions and takes drive parameters into consideration. A hybrid method of Gradient Boosting Decision Tree (GBDT) and random forest algorithm to make decisions on soil conditioning using foam is proposed in this paper to realize automated decision-making. Relevant parameters include decision parameters (geological parameters and drive parameters) and target parameters (dosage of foam). GBDT, an efficient algorithm based on decision tree, is used to determine the weights of geological parameters, forming 3 parameters sets. Then 3 decision-making models are established using random forest, an algorithm with high accuracy based on decision tree. The optimal model is obtained by Bayesian optimization. It proves that the model has obvious advantages in accuracy compared with other methods. The model can realize real-time decision-making with high accuracy under changeable geological conditions and reduce the experiment cost.
Źródło:
Eksploatacja i Niezawodność; 2022, 24, 2; 237--247
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies