Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "funnel flow" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Modelling selected parameters of granular elements in the mixing process
Autorzy:
Matuszek, D.
Powiązania:
https://bibliotekanauki.pl/articles/24182.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Instytut Agrofizyki PAN
Tematy:
modelling
granular mixture
funnel flow
granular structure
product quality
granular material
Opis:
This paper presents the effects of mixing non-homogeneous bicomponent granular structures by the flow method with the use of an inverted cone insert as a supporting element. The analysis of homogeneity of mixtures after 10 consecutive flows was carried out based on computer image analysis. Based on these tests, the use of a nonlinear regression for the mo-delling of two selected parameters of the process was proposed. Spatial dependence was described by the relation between the va-riance of the tracer distribution (dependent variable) and density ratio of the mixed components, and the diameter of the cone insert used (independent variables). The mathematical description was made with the use of a ‘nonlinear regression’ module. The results obtained in these tests proved that the use of supporting insert improves the degree of mixability of granular materials. The two-dimensional model in the form of a quadratic function may be a for-mula for describing the influence of selected parameters on the homogeneity of a granulate mixture before the beginning of the mixing process.
Źródło:
International Agrophysics; 2015, 29, 1
0236-8722
Pojawia się w:
International Agrophysics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation of gravitational solids flow process and its parameters estimation by the use of Electrical Capacitance Tomography and Artificial Neural Networks
Symulacja przepływu grawitacyjnego i estymacja jego parametrów przy użyciu elektrycznej tomografii pojemnościowej i sztucznych sieci neuronowych
Autorzy:
Garbaa, H.
Jackowska-Strumiłło, L.
Grudzień, K.
Romanowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/408370.pdf
Data publikacji:
2016
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
electrical capacitance tomography
process simulation
Artificial Neural Networks
funnel flow parameters estimation
elektryczna tomografia pojemnościowa
symulacja procesu
sztuczne sieci neuronowe
estymacja parametrów przepływu kominowego
Opis:
The paper presents a new approach to monitoring changes of characteristic parameters of gravitational solids flow. Electrical Capacitance Tomography (ECT) is applied for non-invasive process monitoring. Artificial Neural Networks (ANN) are used to estimate important flow parameters knowing the measured capacitances. The proposed approach solves the ECT inverse problem in a direct manner and provides a rapid parameterization of the funnel flow. The simulation of the silo discharging process is performed relying on real flow behaviour obtained from the authors’ previous work. The simulated data are used to new approach testing and verification. The obtained results proved that proposed ANN-based method will allow for on-line gravitational solids flow monitoring.
W artykule opisano nowe podejście do monitorowania zmian charakterystycznych parametrów przepływu grawitacyjnego. Do nieinwazyjnego monitorowania procesu stosowana jest Elektryczna Tomografia Pojemnościowa (ECT). Sztuczne Sieci Neuronowe wykorzystywane są do estymacji ważnych parametrów przepływu na podstawie mierzonych pojemności. Zaproponowane podejście pozwala na rozwiązanie problemu odwrotnego w ECT w sposób bezpośredni i umożliwia natychmiastową parametryzację przepływu kominowego. Symulacja procesu rozładowania silosu została wykonana na podstawie wyników wcześniejszych badań eksperymentalnych przeprowadzonych na rzeczywistym obiekcie. Dane symulacyjne wykorzystano do testowania i weryfikacji nowego podejścia. Uzyskane wyniki wykazały, iż zaproponowana metoda wykorzystująca Sztuczne Sieci Neuronowe pozwoli na monitorowanie on-line parametrów przepływu grawitacyjnego.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2016, 2; 34-37
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies