Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "enzyme activities" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Effects of heavy metal Cd pollution on microbial activities in soil
Autorzy:
Shi, Weilin
Ma, Xiying
Powiązania:
https://bibliotekanauki.pl/articles/986980.pdf
Data publikacji:
2017
Wydawca:
Instytut Medycyny Wsi
Tematy:
heavy metals
microbial activity
soil respiratory
soil enzyme activities
Opis:
Heavy metal contamination of soil occurs when heavy metals are introduced to soil through human activities, leading to the gradual deterioration of the ecology and environment. Microorganism activity reflects the intensity of various biochemical reactions in soil, and changes in it reflect the level of heavy metal pollution affecting the soil. The effects were studied of heavy metal Cd on the microbial activity of soil at different concentrations by investigating the respiratory intensity, urease activity, and catalase activity in forest soil and garden soil. The results showed that the respiratory intensity, urease and catalase activities in the garden soil were all higher than in the forest soil. Cd has obvious inhibitory effects on microbial activities. The three parameters exhibited a downward trend with increasing concentrations of Cd. Catalase activity increased when the mass concentration of Cd reached 1.0 mg/kg, indicating that low concentrations of Cd can promote the activity of some microorganisms. Respiratory intensity and urease activity also increased when the concentration reached 10.0 mg/kg, showing that respiratory intensity and urease activity have strong response mechanisms to adverse conditions. The effective state of Cd in soil, as well as inhibition of microbial activity, decreased with incubation time.
Źródło:
Annals of Agricultural and Environmental Medicine; 2017, 24, 4
1232-1966
Pojawia się w:
Annals of Agricultural and Environmental Medicine
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Defense responses of rice plant to Monographella albescens attack
Autorzy:
Almas, D.E.
Kamrodi, A.R.
Powiązania:
https://bibliotekanauki.pl/articles/2084805.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
defense-signaling genes
enzyme activities
Monographella albescens
rice
RT-qPCR
Opis:
Leaf scald, caused by the necrotrophic fungus Monographella albescens, is one of the main threats to rice (Oryza sativa L.) around the world. This disease decreases yields in rice by up to 30% because of dead leaf tissue, damaged seeds, and sterile flowers. Currently, there is limited knowledge about the molecular mechanisms involved in rice plant resistance against this pathogen. For this purpose, six commercial cultivars of rice were primarily screened for M. albescens infection and development. Dasht and Salari were found to be the most resistant and susceptible to M. albescens infection, respectively. The plants were kept in a greenhouse at 29 ± 2°C during the day and 26 ± 2°C at night with a relative air humidity of 85 ± 5%. Forty-five days after sowing, the plants with three biological replications were inoculated by transferring a PDA disc (0.3 cm2) containing M. albescens mycelia to the middle third of the 7th, 8th, and 9th completely open leaves. The leaves were collected 24, 48, 72, 96 and 120 hai. Leaf samples were also collected from the non-inoculated plants (0 h) to serve as controls. Real-time quantitative PCR (RT-qPCR) showed rapid induction and significant accumulation of jasmonic acid (JA) and ethylene (ET) responsive genes such as lipoxygenase (LOX), allene oxide synthase 2 (Aos2), jasmonic acid carboxyl methyltransferase 1 (JMT1) and ACC synthase 1 (ACS1) in the resistant Dasht cultivar after infection with M. albescens. Furthermore, the transcripts of salicylic acid (SA) responsive phenyl alanine ammonia lyase 1 (PAL1) and nonexpressor of pathogenesis-related genes 1 (NPR1) genes were induced in the incompatible interaction. The activities of the defense enzymes superoxide dismutase (SOD), peroxidase (POX) and glutathione reductase (GR) increased strongly in Dasht in response to M. albescens infection. In addition, there was an increase in the H2 O2 levels in the leaves of the Dasht cultivar during the infectious period of M. albescens associated with the enhancement of catalase (CAT) activity as well as higher levels of malondialdehyde (MDA). This is the first study on the interaction between rice and M. albescens at the molecular level. It can contribute to understanding how rice responds to pathogen infection, as well as assist with future research plans of molecular breeding regarding the tolerance to leaf scald disease.
Źródło:
Journal of Plant Protection Research; 2019, 59, 4; 535-543
1427-4345
Pojawia się w:
Journal of Plant Protection Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies