Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ensemble design" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Examining the Predictive Capability of Advanced Software Fault Prediction Models – An Experimental Investigation Using Combination Metrics
Autorzy:
Sharma, Pooja
Sangal, Amrit Lal
Powiązania:
https://bibliotekanauki.pl/articles/2060915.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
process product
process metrics
classifiers
ensemble design
software
fault prediction
software quality
Opis:
Background: Fault prediction is a key problem in software engineering domain. In recent years, an increasing interest in exploiting machine learning techniques to make informed decisions to improve software quality based on available data has been observed. Aim: The study aims to build and examine the predictive capability of advanced fault prediction models based on product and process metrics by using machine learning classifiers and ensemble design. Method: Authors developed a methodological framework, consisting of three phases i.e., (i) metrics identification (ii) experimentation using base ML classifiers and ensemble design (iii) evaluating performance and cost sensitiveness. The study has been conducted on 32 projects from the PROMISE, BUG, and JIRA repositories. Result: The results shows that advanced fault prediction models built using ensemble methods show an overall median of $F$-score ranging between 76.50% and 87.34% and the ROC(AUC) between 77.09% and 84.05% with better predictive capability and cost sensitiveness. Also, non-parametric tests have been applied to test the statistical significance of the classifiers. Conclusion: The proposed advanced models have performed impressively well for inter project fault prediction for projects from PROMISE, BUG, and JIRA repositories.
Źródło:
e-Informatica Software Engineering Journal; 2022, 16, 1; art. no. 220104
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Combining classifiers - concept and applications
Autorzy:
Woźniak, M.
Powiązania:
https://bibliotekanauki.pl/articles/333902.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
łączenie klasyfikatorów
systemy wielo-klasyfikatorów
rozpoznawanie obrazów
projekt nagrzewnicy
projekt zespołu
combining classifier
multiple classifier systems
pattern recognition
fuser design
ensemble design
Opis:
Problem of pattern recognition is accompanying our whole life, therefore methods of automatic pattern recognition is one of the main trend in Artificial Intelligence. Multiple classifier systems (MCSs) are currently the focus of intense research. In this conceptual approach, the main effort is concentrated on combining knowledge of the set of individual classifiers. Proposed work presents a brief survey of the main issues connected with MCSs and provides comparative analysis of some classifier fusion methods.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 15; 19-27
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies