Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "drug carrier" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Electrospinning for drug delivery systems: potential of the technique
Autorzy:
Dzierzkowska, Ewa
Stodolak-Zych, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/284606.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
electrospinning
drug carrier
DDS
nanofibers
polymer
Opis:
Electrospinning is a technique used to manufacture nano- and submicron fibers based on synthetic or natural polymers. Additionally, biomaterials used in the electrospinning procedure can be modified by bioactive compounds, e.g. peptides or growth factors. The microstructure of the obtained fibrous scaffolds mimics natural extracellular matrix (ECM) environment. The size and the microstructure of the fibrous scaffolds are considered to be suitable for cells adhesion and proliferation. Various design features of the electrospinning device (e.g. the shape of the collector, the shape of the nozzle, the direction of the applied voltage) or electrospinning conditions (e.g. humidity, temperature) allows to control properties of the fibers (their shape, diameter, porosity). Novel structures, such as core-shell fibers, porous fibers attracted wide attention due to their properties and functionalities. Porous fibers or fibers with nanoscaled structures can be obtained in several ways. These methods are mainly focused on using high humidity and highly volatile solvent applied in the electrospinning process. The core-shell structure can be obtained by coaxial electrospinning. That binary fiber has ability to control the release rate of drug enclosed within the shell or core. The drug release profile can be also modified by loading the pharmacological agent either directly to the spinning solution or its post immobilization.This diversity of the electrospun fibers is a reason for non-woven materials to be considered for application as drug carriers. The review of electrospinning methods presented here proves that the control over fibers surface area, morphology and the choice of polymer enable modelling of drug release kinetics.
Źródło:
Engineering of Biomaterials; 2019, 22, 149; 10-14
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preparation and characterization of bio-hybrid hydrogel materials
Autorzy:
Malina, Dagmara
Królicka, Ewelina
Bialik-Wąs, Katarzyna
Pluta, Klaudia
Powiązania:
https://bibliotekanauki.pl/articles/1844974.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
hydrogel matrix
drug delivery system
carrier-drug system
synthesis
hydrocortisone
Opis:
In recent decades, research has focused on the development of modern hydrogel dressings due to their open porous structure, moisture retention and good mechanical strength, which ensures an optimal environment for cell migration and proliferation. Active hydrogel dressings, currently available on the market, are not endowed with additional medicinal substances. In this work the authors attempted to introduce a carrier-drug system into the hydrogel matrix to improve the wound healing process and the tissue recovery. The main goal of the research was to obtain the bio-hybrid sodium alginate/poly(vinyl alcohol)/Aloe vera (SA/PVA/AV)-based hydrogel matrices modified with the thermosensitive polymeric carrier – the active substance (hydrocortisone) system. First, thermosensitive polymeric nanocarriers were obtained, then the encapsulation was conducted, using varied amounts of hydrocortisone (25 and 50 mg) to maintain the stability of the resulting emulsions. The last stage was preparing the bio-hybrid hydrogel matrices by the chemical cross-linking method. The non-invasive dynamic light scattering (DLS) technique was employed for the analysis of the average particle size of the polymeric carriers and the carrier-drug systems. Moreover, the studies also determined the swelling behaviour and the gel fraction of the obtained bio-hybrid hydrogel matrices modified with carrier-drug systems by the infrared spectroscopy (FT-IR). The presented research results constitute a good experimental basis for further modifications, the final effect of which is assumed to be a modern bio-hybrid 3rd generation dressing.
Źródło:
Engineering of Biomaterials; 2020, 23, 155; 12-16
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multifunctional biodegradable polymer/clay nanocomposites with antibacterial properties in drug delivery systems
Autorzy:
Rapacz-Kmita, Alicja
Szaraniec, Barbara
Mikołajczyk, Maciej
Stodolak-Zych, Ewa
Dzierzkowska, Ewa
Gajek, Marcin
Dudek, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/27324154.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
nanocomposite
clay mineral
drug carrier
mechanical properties
antimicrobial activities
nanokompozyt
minerał ilasty
nośnik leku
właściwości mechaniczne
działanie przeciwdrobnoustrojowe
Opis:
Purpose: The aim of this study was to investigate the possibility of intercalation of gentamicin and neomycin in montmorillonite (MMT) nanofillers, as well as to study the in vitro antimicrobial properties of nanocomposite films containing a small amount of thus obtained nanofillers. Methods: The polylactide matrix (PLA) nanocomposite films with drug-intercalated montmorillonite fillers were obtained by casting after intercalation of drugs in aqueous solutions. The efficiency of intercalation has been confirmed by X-ray diffraction (XRD) and Zeta potential measurements. The materials were studied for surface wettability, roughness and mechanical properties during 6 weeks of incubation in phosphate buffer saline, and their bactericidal activity was tested against Escherichia coli bacteria before and after 6 weeks of incubation in distilled water at 37 C. The presence of antibiotics during the incubation was monitored by conductivity and pH measurements. Results: The results indicate that nanocomposite polylactide films with montmorillonite filler intercalated with gentamicin and neomycin tend to degrade faster that their counterparts with non-intercalated fillers, which affects their mechanical properties. However, drug intercalation provided an antibacterial activity, which was confirmed by the presence of zones inhibiting the growth of Gram-negative bacteria for both antibiotics. It was also confirmed that the interaction of antibiotics with clay and polymer matrix did not adversely affect this bactericidal effect. Conclusions: Montmorillonite can be successfully intercalated with both gentamicin and neomycin, and then used as active filler for polylactide films having very good antibacterial properties, therefore their use in biomedical applications can be significantly expanded.
Źródło:
Acta of Bioengineering and Biomechanics; 2020, 22, 2; 83--92
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
THE STUDY OF ADSORPTION AND DESORPTION OF ANTIBIOTICS ON THE SURFACE OF NANOPARTICLES
Autorzy:
Biernat, Paweł
Borak, Beata
Meler, Jan
Karolewicz, Bożena
Powiązania:
https://bibliotekanauki.pl/articles/895282.pdf
Data publikacji:
2018-10-31
Wydawca:
Polskie Towarzystwo Farmaceutyczne
Tematy:
silica
antibiotics
nanoparticles
adsorption
drug
carrier
Opis:
Nanotechnology is a field that is gaining more and more importance in the modern world. It uses a particle size of between a few dozen to a few hundred nanometers, or 10-9 meters. It is noted that the use of nanospheres (balls with a diameter of from several to several hundred nm) as carriers of drugs gives an opportunity for their controlled and sustained release. (1,2) Nanospheres as a potential drug carrier for sustained release may enhance the effectiveness of antibiotics. In order to examine the effects of antibiotics with nanospheres an attempt was made to deposit on them three drugs differing in chemical structure. These were chloramphenicol, gentamicin and ceftazidime. The aim of this study was to determine the degree of adsorption of the drug on the surface of nanospheres and to examine the process of desorption from the surface of silica nanoparticles. The results of the study indicate that in the case of chloramphenicol it is essentially a process of chemisorption, and for gentamicin and ceftazidime both physical and chemical adsorption, without there being any clearly defined relationship between this two processes. The purpose of the nanospheres as drug carriers is to obtain controlled and prolonged exposure to the drug. The amount of adsorbed substance depends primarily on its structure. Ceftazidime, as the compound with the highest number of double bonds, and a large number of groups to form hydrogen bonds (carbonyl groups, amino groups), adsorbed to the greatest extent.
Źródło:
Acta Poloniae Pharmaceutica - Drug Research; 2018, 75, 5; 1215-1222
0001-6837
2353-5288
Pojawia się w:
Acta Poloniae Pharmaceutica - Drug Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies