Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "crowd analysis" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A data association model for analysis of crowd structure
Autorzy:
Zitouni, M. Sami
Śluzek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/2055152.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
data association
visual surveillance
crowd analysis
algebraic model
powiązanie danych
nadzór wizyjny
analiza tłumu
tryb algebraiczny
Opis:
The paper discusses a non-deterministic model for data association tasks in visual surveillance of crowds. Using detection and tracking of crowd components (i.e., individuals and groups) as baseline tools, we propose a simple algebraic framework for maintaining data association (continuity of labels assigned to crowd components) between subsequent video-frames in spite of possible disruptions and inaccuracies in tracking/detection algorithms. Formally, two alternative schemes (which, in practice, can be jointly used) are introduced, depending on whether individuals or groups can be prospectively better tracked in the current scenario. In the first scheme, only individuals are tracked, and the continuity of group labels is inferred without explicitly tracking the groups. In the second scheme, only group tracking is performed, and associations between individuals are inferred from group tracking. The associations are built upon non-deterministic estimates of memberships (individuals in groups) and estimates obtained directly from the baseline detection and tracking algorithms. The framework can incorporate any detectors and trackers (both classical or DL-based) as long as they can provide some geometric outlines (e.g., bounding boxes) of the crowd components. The formal analysis is supported by experiments in sample scenarios, where the framework provides meaningful performance improvements in various crowd analysis tasks.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 1; 81--94
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Abnormal prediction of dense crowd videos by a purpose-driven lattice Boltzmann model
Autorzy:
Xue, Y.
Liu, P.
Tao, Y.
Tang, X.
Powiązania:
https://bibliotekanauki.pl/articles/329703.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
video surveillance
crowd analysis
abnormal events
lattice Boltzmann model
purpose driven strategy
monitoring wizyjny
analiza tłumu
zdarzenie nieprawidłowe
Opis:
In the field of intelligent crowd video analysis, the prediction of abnormal events in dense crowds is a well-known and challenging problem. By analysing crowd particle collisions and characteristics of individuals in a crowd to follow the general trend of motion, a purpose-driven lattice Boltzmann model (LBM) is proposed. The collision effect in the proposed method is measured according to the variation in crowd particle numbers in the image nodes; characteristics of the crowd following a general trend are incorporated by adjusting the particle directions. The model predicts dense crowd abnormal events in different intervals through iterations of simultaneous streaming and collision steps. Few initial frames of a video are needed to initialize the proposed model and no training procedure is required. Experimental results show that our purpose-driven LBM performs better than most state-of-the-art methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2017, 27, 1; 181-194
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies