Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "conservative method" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A conservative scheme with optimal error estimates for a multidimensional space-fractional Gross–Pitaevskii equation
Autorzy:
Hendy, Ahmed S.
Macías-Díaz, Jorge E.
Powiązania:
https://bibliotekanauki.pl/articles/330834.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
generalized Gross–Pitaevskii system
Riesz fractional diffusion
Sobolev inequality
conservative method
optimal error bounds
równanie Grossa-Pitaevskiego
nierówność Sobolewa
metoda konserwatywna
optymalna granica błędu
Opis:
The present work departs from an extended form of the classical multi-dimensional Gross–Pitaevskii equation, which considers fractional derivatives of the Riesz type in space, a generalized potential function and angular momentum rotation. It is well known that the classical system possesses functionals which are preserved throughout time. It is easy to check that the generalized fractional model considered in this work also possesses conserved quantities, whence the development of conservative and efficient numerical schemes is pragmatically justified. Motivated by these facts, we propose a finite-difference method based on weighted-shifted Grünwald differences to approximate the solutions of the generalized Gross–Pitaevskii system. We provide here a discrete extension of the uniform Sobolev inequality to multiple dimensions, and show that the proposed method is capable of preserving discrete forms of the mass and the energy of the model. Moreover, we establish thoroughly the stability and the convergence of the technique, and provide some illustrative simulations to show that the method is capable of preserving the total mass and the total energy of the generalized system.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 4; 713-723
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Semi-analytical treatment of complex nonlinear oscillations arising in the slider-crank mechanism
Autorzy:
Big-Alabo, Akuro
Ogbodo, Collins Onyinyechukwu
Ossia, Chinwuba Victor
Powiązania:
https://bibliotekanauki.pl/articles/1031444.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Slider-crank mechanism
conservative system
continuous piecewise linearization method
non-natural system
nonlinear oscillation
periodic solution
Opis:
The model for the free nonlinear oscillation of the slider-crank mechanism is very complicated and difficult to solve accurately using most of the existing approximate analytical schemes. However, the continuous piecewise linearization method (CPLM), which is a recently proposed semi-analytical algorithm, is capable of producing simple and accurate periodic solutions for conservative systems irrespective of the complexity of the nonlinear restoring force. Hence, this study applied the CPLM to solve and analyze the complex nonlinear oscillations arising in the slider-crank mechanism. The CPLM results were verified using numerical solutions and it was found that the CPLM solution was accurate to less than 1.0% for angular amplitudes up to 165°. Analysis of the frequency-amplitude response revealed the existence of asymptotic behaviour as the ratio of the crank radius to the connecting rod length approaches zero or unity. Hence, oscillation models for the observed asymptotic responses were derived and found to be significantly simpler compared to the original oscillation model. Finally, analysis of the large-amplitude oscillations of the slider-crank mechanism revealed the presence of strong anharmonic response.
Źródło:
World Scientific News; 2020, 142; 1-24
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies