Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "bandwidth selection" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
An approximate necessary condition for the optimal bandwidth selector in kernel density estimation
Autorzy:
Gajek, L.
Lenic, A.
Powiązania:
https://bibliotekanauki.pl/articles/1340710.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
bandwidth selection
kernel density estimation
resampling
Opis:
An approximate necessary condition for the optimal bandwidth choice is derived. This condition is used to construct an iterative bandwidth selector. The algorithm is based on resampling and step-wise fitting the bandwidth to the density estimator from the previous iteration. Examples show fast convergence of the algorithm to the bandwidth value which is surprisingly close to the optimal one no matter what is the initial knowledge on the unknown density.
Źródło:
Applicationes Mathematicae; 1993-1995, 22, 1; 123-138
1233-7234
Pojawia się w:
Applicationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
FPGA-based bandwidth selection for kernel density estimation using high level synthesis approach
Autorzy:
Gramacki, A.
Sawerwain, M.
Gramacki, J.
Powiązania:
https://bibliotekanauki.pl/articles/201258.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
FPGA
high level synthesis
kernel density estimation
bandwidth selection
plug-in selector
synteza wysokiego poziomu
jądrowy estymator gęstości
wybór pasma informacyjnego
Opis:
Field-programmable gate arrays (FPGA) technology can offer significantly higher performance at much lower power consumption than is available from single and multicore CPUs and GPUs (graphics processing unit) in many computational problems. Unfortunately, the pure programming for FPGA using hardware description languages (HDL), like VHDL or Verilog, is a difficult and not-trivial task and is not intuitive for C/C++/Java programmers. To bring the gap between programming effectiveness and difficulty, the high level synthesis (HLS) approach is promoted by main FPGA vendors. Nowadays, time-intensive calculations are mainly performed on GPU/CPU architectures, but can also be successfully performed using HLS approach. In the paper we implement a bandwidth selection algorithm for kernel density estimation (KDE) using HLS and show techniques which were used to optimize the final FPGA implementation. We are also going to show that FPGA speedups, comparing to highly optimized CPU and GPU implementations, are quite substantial. Moreover, power consumption for FPGA devices is usually much less than typical power consumption of the present CPUs and GPUs.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2016, 64, 4; 821-829
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphics processing units in acceleration of bandwidth selection for kernel density estimation
Autorzy:
Andrzejewski, W.
Gramacki, A.
Gramacki, J.
Powiązania:
https://bibliotekanauki.pl/articles/330819.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
bandwidth selection
graphics processing unit
probability density function
nonparametric estimation
kernel estimation
szerokość pasmowa
programowalny procesor graficzny
funkcja gęstości prawdopodobieństwa
estymacja nieparametryczna
estymacja jądrowa
Opis:
The Probability Density Function (PDF) is a key concept in statistics. Constructing the most adequate PDF from the observed data is still an important and interesting scientific problem, especially for large datasets. PDFs are often estimated using nonparametric data-driven methods. One of the most popular nonparametric method is the Kernel Density Estimator (KDE). However, a very serious drawback of using KDEs is the large number of calculations required to compute them, especially to find the optimal bandwidth parameter. In this paper we investigate the possibility of utilizing Graphics Processing Units (GPUs) to accelerate the finding of the bandwidth. The contribution of this paper is threefold: (a) we propose algorithmic optimization to one of bandwidth finding algorithms, (b) we propose efficient GPU versions of three bandwidth finding algorithms and (c) we experimentally compare three of our GPU implementations with the ones which utilize only CPUs. Our experiments show orders of magnitude improvements over CPU implementations of classical algorithms.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 4; 869-885
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bandwidth selection for kernel generalized regression neural networks in identification of hammerstein systems
Autorzy:
Lv, Jiaqing
Pawlak, Mirosław
Powiązania:
https://bibliotekanauki.pl/articles/2031118.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
generalized regression neural network
nonparametric estimation
bandwidth
data-driven selection
nonlinear system
Hammerstein system
Opis:
This paper addresses the issue of data-driven smoothing parameter (bandwidth) selection in the context of nonparametric system identification of dynamic systems. In particular, we examine the identification problem of the block-oriented Hammerstein cascade system. A class of kernel-type Generalized Regression Neural Networks (GRNN) is employed as the identification algorithm. The statistical accuracy of the kernel GRNN estimate is critically influenced by the choice of the bandwidth. Given the need of data-driven bandwidth specification we propose several automatic selection methods that are compared by means of simulation studies. Our experiments reveal that the method referred to as the partitioned cross-validation algorithm can be recommended as the practical procedure for the bandwidth choice for the kernel GRNN estimate in terms of its statistical accuracy and implementation aspects.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 3; 181-194
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies