Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "aerial scanning" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Multispectral airborne laser scanning - a new trend in the development of LiDAR technology
Multispektralne lotnicze skanowanie laserowe - nowy trend w rozwoju technologii LiDAR
Autorzy:
Bakuła, K.
Powiązania:
https://bibliotekanauki.pl/articles/129823.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
multispectral laser scanning
aerial scanning
wavelength
ALS
lidar
classification
color composition
map land cover
multispektralne skanowanie laserowe
skanowanie lotnicze
długość fali
LiDAR
klasyfikacja
kompozycja barwna
mapa pokrycia terenu
Opis:
Airborne laser scanning (ALS) is the one of the most accurate remote sensing techniques for data acquisition where the terrain and its coverage is concerned. Modern scanners have been able to scan in two or more channels (frequencies of the laser) recently. This gives the rise to the possibility of obtaining diverse information about an area with the different spectral properties of objects. The paper presents an example of a multispectral ALS system - Titan by Optech - with the possibility of data including the analysis of digital elevation models accuracy and data density. As a result of the study, the high relative accuracy of LiDAR acquisition in three spectral bands was proven. The mean differences between digital terrain models (DTMs) were less than 0.03 m. The data density analysis showed the influence of the laser wavelength. The points clouds that were tested had average densities of 25, 23 and 20 points per square metre respectively for green (G), near-infrared (NIR) and shortwave-infrared (SWIR) lasers. In this paper, the possibility of the generation of colour composites using orthoimages of laser intensity reflectance and its classification capabilities using data from airborne multispectral laser scanning for land cover mapping are also discussed and compared with conventional photogrammetric techniques.
Jedną z najbardziej dokładnych technologii pozyskiwania danych o terenie i jego pokryciu jest lotnicze skanowanie laserowe (ALS). W wieloletnim rozwoju skanerów laserowych dążono przez lata do osiągnięcia jak najwyższej dokładności pomiaru oraz jak największej gęstości danych, co związane było przede wszystkim z jakością danych i kosztami pracy. Obecnie istnieje kilka możliwości dalszego rozwoju tego typu systemów, wśród których wymienić należy zwiększanie zasięgu skanowania laserowego, a także rejestracja odbić w kilku zakresach spektralnych. Szczególnie ostatni trend w rozwoju technologii LIDAR pozwala na inne spojrzenie na dane w postaci chmur punktów, które jeszcze efektywniej mogą tworzyć mapy pokrycia terenu niż typowe lotnicze skanowanie topograficzne (ALS). W rozwoju lotniczego skanowania laserowego istotnym krokiem było pojawienie się lotniczego skanowania hydrograficznego (batymetrycznego). W różnych rozwiązaniach producentów, pojawił się laser o częstotliwości odpowiadającej zakresowi w paśmie zielonym światła widzialnego. Przy rejestracji intensywności zaobserwowanymi podczas skanowania różnymi skanerami laserem o różnej długości fali dla tego samego obszaru, dostrzeżono różne właściwości refleksyjnymi obiektów analogiczne do rejestracji w różnych zakresach spektralnych technikami pasywnymi. Sprawiło to, że w ostatnich latach pojawiły się pierwsze systemy skanowania lotniczego wykorzystujące więcej niż 2 zakresy spektralne w jednym skanerze. Od tego czasu można zatem mówić o multispektralnym lotniczym skanowaniu laserowym. Rejestracja chmur punktów w 3 zakresach spektralnych pozwala poza zapisem współrzędnych i innych atrybutów charakterystycznych dla skanowania topograficznego, na zapis również 3 wartości intensywności odbicia, co umożliwia tworzenie kompozycji barwnych w postaci true-orto obrazów. W artykule zaprezentowano przykładowy system multispektralnego lotniczego skanowania laserowego wraz z możliwościami, jakie dają dane nim pozyskane, poruszając kwestię gęstości danych, dokładności numerycznych modeli wysokościowych z nich tworzonych. W wyniku analiz udowodniono wysoką dokładność wzajemną rejestracji w poszczególnych kanałach spektralnych wynoszącą do 0.03 m. W analizie gęstości danych ukazano wpływ długości fali na gęstość chmury punktów. Rozpatrywana chmura punktów miała średnią gęstość 25, 23 i 20 punktów na metr kwadratowy odpowiednio dla lasera z zakresu pasma zielonego, bliskiej podczerwieni i średniej podczerwieni. W artykule poruszono także problematykę tworzenia kompozycji barwnych ortoobrazów z intensywności odbicia oraz możliwości klasyfikacji ich treści. W referacie poddano również dyskusji możliwość zastosowania danych z mutlispektralnego lotniczego skanowania laserowego w tworzeniu map pokrycia terenu w porównaniu z tradycyjnymi technikami fotogrametrycznymi.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2015, 27; 25-44
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The height survey of mount Łysica in the context of verification of geodesical and cartographic studies
Pomiar wysokościowy góry Łysicy w kontekście weryfikacji opracowań geodezyjno-kartograficznych
Autorzy:
Romanyshyn, Ihor
Hajdukiewicz, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/402338.pdf
Data publikacji:
2019
Wydawca:
Politechnika Świętokrzyska w Kielcach. Wydawnictwo PŚw
Tematy:
Aerial Laser Scanning
DEM
GNSS static
lotniczy skaning laserowy
ALS
numeryczny model terenu
NMT
pomiar statyczny GNSS
Opis:
The subject of the article is the measurements of normal height (H) of the western top of Mount Łysica (Świętokrzyskie Mountains, Poland), carried out using the GNSS and geometric leveling methods according to standards for geodetic control network. As the elevation system EN-KRON86-NH was assumed. The reference data was the result of earlier measurements made using different methods: ALS, GNSS RTN and geometric levelling between selected points of Mount Łysica. The analysis of the survey results showed differences between the DEM from ALS measurement and the actual height reaching up to 0.47 m on small boulders and not exceeding the value of 0.17 m in the flat area. Differences between GNSS RTN measurement and geometric leveling based on GNSS static measurement did not exceed 0.03 m. An inventory of former state geodetic control network point “12 Góra Łysica” was also conducted. The point was found to be partially destroyed, and located 12 m south and 1.5 m below the actual top of the mountain. Therefore it was assumed, that a new geodetic control network point should be located on the top for the needs of forest inventory as well as setting the actual height of Mount Łysica.
W artykule opisano wyniki pomiarów wysokości normalnej H wybranych punktów na wierzchołku zachodnim góry Łysicy w paśmie Łysogór (Góry Świętokrzyskie), przeprowadzone metodami GNSS i niwelacji geometrycznej według standardów dla osnowy wysokościowej. Jako układ wysokościowy przyjęto PL-KRON86-NH, a wyniki zestawiono z wcześniejszymi pomiarami ALS, GNSS RTN i niwelacją geometryczną między wybranymi punktami wysokościowymi na masywie Łysicy. Analiza wyników pomiarów wykazała rozbieżności pomiędzy modelem terenu z pomiaru ALS a wysokością rzeczywistą osiągające wartości do 0,47 m na niewielkich wypukłych formach terenu i nieprzekraczające wartości 0,17 m na terenie płaskim. Rozbieżności pomiędzy pomiarem GNSS RTN a niwelacją geometryczną w oparciu o pomiar GNSS static nie przekraczały wartości 0,03 m. Przeprowadzono również inwentaryzację stanu starego punktu osnowy geodezyjnej 12 góra Łysica. Wobec faktu, że punkt ten jest częściowo zniszczony i znajduje się w odległości 12 m w poziomie i 1,5 m poniżej rzeczywistego wierzchołka, zasadne wydaje się założenie nowego punktu osnowy, który służyłby m.in. pomiarom w ramach inwentaryzacji stanu lasu, a także wyznaczał rzeczywistą wysokość szczytu Łysicy.
Źródło:
Structure and Environment; 2019, 11, 2; 153-164
2081-1500
Pojawia się w:
Structure and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cycle paths design based on aerial laser scan data
Projektowanie ścieżek rowerowych na podstawie danych z lotniczego skaningu laserowego
Autorzy:
Bacior, S.
Gniadek, J.
Piech, I.
Stachowicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/100230.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
aerial laser scanning
digital terrain model
cycle paths
cycle route
longitudinal profile
lotniczy skaning laserowy
Numeryczny Model Terenu
ścieżka rowerowa
profil podłużny
Opis:
Development of cycle routes in Poland is a frequently discussed topic. This type of infrastructure may be designed using a variety of methods. Manual planning of new cycle paths based on aerial laser scan data is relatively quick and also precise. The ALS technique can provide the required accuracy of design map in terms of elevation measurements. It is worth noting that only a few years ago studies indicated that elevation measurements were less accurate when using this particular technique [Hejmanowska, Warchoł 2010]. The designer has a detailed insight into the studied area. He may easily assess the terrain and choose the optimal location for the given object. Planning the route course and its elevation variability is simple when using a Digital Terrain Model. The first stage of the present study analyses the rules that apply to bicycle route design and the area covered by the study. The course of the new cycle path was planned in such a way as to connect the most important places in towns as well as places of tourist interest. The resultant route is 1.8 km long and runs along the main road. Development of DTM and its visualizations were performed mainly on the basis of two point clouds provided by the Geodetic and Cartographic Documentation Center. The initial works were performed in MicroStation PowerDraft V8i software. In the next stage, a 3D visualization of the model was generated with the use of Surfer 11 program. Based on that, a longitudinal profile of the route was created.
Rozwój tras rowerowych w Polsce jest często poruszanym tematem. Projektowanie tego typu infrastruktury może być wykonane różnymi sposobami. Ręczne planowanie nowych ścieżek rowerowych w oparciu o dane z lotniczego skaningu laserowego odbywa się stosunkowo szybko, a zarazem dokładnie. Technika ALS jest w stanie zagwarantować wymagane dokładności mapy projektowej w zakresie pomiaru wysokościowego. Warto zwrócić uwagę, że jeszcze kilka lat temu badania wykazywały mniejszą dokładność pomiaru wysokości tą techniką [Hejmanowska, Warchoł, 2010]. Projektant ma szczegółowy wgląd w badany obszar. Łatwo może dokonać oceny terenu i wybrać optymalne położenie projektu. Bazując na wykonanym Numerycznym Modelu Terenu można w prosty sposób zaplanować przebieg trasy oraz określić jej zróżnicowanie wysokościowe. W pierwszym etapie opracowania dokonano analizy zasad obowiązujących przy projektowaniu tras rowerowych oraz obszaru badań. Zaplanowano przebieg nowej ścieżki tak, aby łączyła najważniejsze punkty miejscowości oraz obiekty turystyczne. W efekcie powstała trasa o długości 1,8 km biegnąca wzdłuż głównej drogi. NMT oraz jego wizualizację dokonano głównie na podstawie dwóch chmur punktów pochodzących z Centralnego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej. Opracowanie rozpoczęto w programie MicroStation PowerDraft V8i. W kolejnym etapie opracowano trójwymiarową wizualizację modelu w programie Surfer 11. Na jego podstawie stworzono profil podłużny powstałej trasy.
Źródło:
Geomatics, Landmanagement and Landscape; 2017, 2; 21-35
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new approach to dtm error estimation basing on laplacian probability distribution function
Autorzy:
Hejmanowska, B.
Kay, S.
Powiązania:
https://bibliotekanauki.pl/articles/130024.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
Aerial
lidar
accuracy
point cloud
laser scanning
LIDAR
dokładność
chmura punktów
skanowanie laserowe
Opis:
A Digital Terrain Model (DTM) derived from Airborne Laser Scanning (ALS) was the subject of our research. In this paper, the vertical accuracy of the DTM was analyzed on the basis of the commonly used statistics, i.e. mean error and standard deviation, assuming a normal (Gauss) error distribution. The further approach, the so-called robust method (Höhle, Höhle 2009), was also tested, where the median was a substitute for the mean error and the Normalized Median Absolute Deviation (NMAD) for the standard deviation. An alternative method based on the Laplace function is proposed in the paper for describing the probability density function, where the parameters of the Laplace function are proposed for DTM error estimation. The test area was near the Joint Research Centre in Ispra, Italy; raw ALS data covering the test area were collected in 2005 and processed for DTM generation. Accuracy analysis was performed based on the comparison of DTM with the raw ALS data and with in-situ height measurements. The distribution of DTM errors calculated from ALS data was significantly non-normal, confirming other results reported in the literature. The Gauss distribution function considerably overestimated the vertical DTM errors; however, the robust method underestimated them. The Laplace function matched the error histograms the best, and accuracy parameters derived from this function could be considered as an alternative method for DTM accuracy evaluation.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2011, 22; 201-213
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data classification based on photogrammetry
Klasyfikacja danych w oparciu o materiały fotogrametryczne
Autorzy:
Piech, Izabela
Żaba, Tadeusz
Jankowska, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/100599.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
laser scanning
supervised classification
unsupervised classification
aerial image
skaning laserowy
zdjęcie lotnicze
klasyfikacja nadzorowana
klasyfikacja nienadzorowana
Opis:
The aim of the paper was to classify data from aerial laser scanning and CIR digital images, which were orientated, connected and aligned by the Agisoft Photoscan software. Then, in order to distinguish the ground a point cloud was generated. This was to create a correct terrain mesh and, in consequence, an orthophotomap. The next stage is to develop a new point cloud using ArcGIS. The land cover from the images was combined with the ground mapped by LiDAR. New heights were calculated relative to the ground surface height 0. The point cloud was converted into a raster form, providing a normalized Digital Surface Model (nDSM). It was the first element of the output composition, which also consisted of the NIR and RED channels, acquired from the cloud point generated in Agisoft. The colour composition obtained in such way was subjected to four object-oriented and pixel-oriented classification methods: I – ISO Cluster, II – Maximum Likelihood, III – Random Trees, IV – Support Vector Machine. Object grouping is possible due to information stored in the display content. This technique is prompted by human ability of image interpretation. It draws attention to more variables, so effects similar to human perception of reality are possible to achieve. The unsupervised method is based on a process of automatic search for image fragments, which allows assigning them to individual categories by a statistical analysis algorithm. In turn, supervised method uses “training datasets”, which are used to “teach” the program assigning individual or grouped pixels to classes [Benz UC et al., 2004]. The area studied for land development was the Lutowiska municipality, in the Podkarpackie Voivodeship, Bieszczady County. As a result of the classification, 11 classes of terrain features were distinguished: class 0 – road infrastructure, class 1 – roads, class 2 – buildings, class 3 – waters, class 4 – meadows, class 5 – arable lands, class 6 – pastures, class 7 – high vegetation, class 8 – medium vegetation, class 9 – low vegetation, class 10 – quarry. The area of research covers an area of about 28 km2. Aerial images were made in 2015. Field vision and photopoint measurement was carried out in May 2018.
Celem opracowania jest klasyfikacja danych na podstawie lotniczego skaningu laserowego oraz zdjęć cyfrowych CIR. Do opracowania posłużyło oprogramowanie Agisoft Photoscan, w którym dokonano zorientowania, połączenia i wyrównania zdjęć. Następnie wygenerowano z nich chmurę punktów, z której wydzielono grunt. Miało to na celu poprawne utworzenie siatki terenu, a w konsekwencji ortofotomapy. Kolejny etap pracy to utworzenie nowej chmury punktów przy wykorzystaniu programu ArcGIS. Pokrycie terenu ze zdjęć połączono z gruntem z LiDAR. Obliczono nowe wysokości względem powierzchni terenu, któremu nadano wysokość 0. Dokonano konwersji chmury punktów do postaci rastrowej, uzyskując Znormalizowany Numeryczny Model Pokrycia Terenu. Był to pierwszy element kompozycji wyjściowej, która składała się także z kanału NIR oraz RED, pozyskanych z chmury wygenerowanej w Agisoft. Otrzymaną w ten sposób kompozycję barwną poddano czterem metodom klasyfikacji obiektowej i pikselowej: I- ISO Cluster, II- Maximum Likelihood, III- Random Trees, IV- Support Vector Machine. Grupowanie obiektowe jest możliwe dzięki informacji zapisanej w treści zobrazowania. Technika ta wykorzystuje podejście zainspirowane zdolnością interpretacji obrazu przez człowieka. Zwraca uwagę na więcej zmiennych, dzięki czemu można uzyskać efekty zbliżone do postrzegania rzeczywistości przez ludzi. Metoda Unsupervised bazuje na procesie automatycznego wyszukiwania fragmentów obrazu i przyporządkowania ich do poszczególnych kategorii za pomocą algorytmu wykorzystującego analizę statystyczną. Z kolei Supervised wykorzystuje „pola treningowe”, za pomocą których „uczy” program, do której klasy przyporządkować pojedyncze, czy też zgrupowane piksele [Benz U. C. i in., 2004]. Obszarem poddanym analizie jest gmina Lutowiska, w województwie podkarpackim, powiecie bieszczadzkim, na której dokonano analizy zagospodarowania terenu. W wyniku klasyfikacji wyodrębniono 11 klas form terenu: klasa 0- infrastruktura drogowa, klasa 1- drogi, klasa 2- budynki, klasa 3- woda, klasa 4- łąki, klasa 5- grunty orne, klasa 6- pastwiska, klasa 7- roślinność wysoka, klasa 8- średnia roślinność, klasa 9- roślinność niska, klasa 10- kamieniołom. Obszar opracowania stanowi powierzchnię ok. 28 km2. Zobrazowania lotnicze zostały wykonane w 2015r. Wizję terenową oraz pomiar fotopunktów przeprowadzono w maju 2018r.
Źródło:
Geomatics, Landmanagement and Landscape; 2020, 2; 93-110
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
3D modelling with the use of photogrammetric methods
Modelowanie 3D z wykorzystaniem metod fotogrametrycznych
Autorzy:
Piech, Izabela
Adam, Tomasz
Dudas, Paulina
Powiązania:
https://bibliotekanauki.pl/articles/2174012.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
modelowanie 3D
wizualizacja
skaning laserowy naziemny
bezzałogowy statek powietrzny
kamera niemetryczna
3D modelling
visualization
terrestrial laser scanning
unmanned aerial vehicle
non-metric camera
Opis:
Extremely intensive development of technology has resulted in many innovations. There are new methods of acquiring spatial data, such as laser scanning, unmanned aerial vehicles or digital non-metric cameras, which are the subject of this study. Integration of this data has become a new tool that has expanded existing measurement capabilities, finding applications in 3D modelling, archaeology and monument conservation. Owing to scanning, we can get the coordinates of almost every point of the scanned surface, obtaining full and detailed information about the object dimensions. The level of technical advancement of digital cameras allows them to be successfully used in short-range photogrammetry [27], and recently also in low-altitude aerial photogrammetry (unmanned aerial vehicles). Two different test objects were selected to achieve the intended purpose. The monument located on the 14-meter-high top of the Wanda Mound was adopted as the first object. It consists of a simple rectangular plinth made of brown marble. On its top there is a figure of an eagle with a crown of white marble. On the west wall of the plinth there is an inscription “Wanda” and a drawing showing a sword crossed with a distaff. The following features supported the choice of the monument: interesting shape of the object, which includes both simple geometric forms with large and flat surfaces (plinth), and more detailed surfaces (figure of an eagle); detailed texture of the object (complicated marble veins, wing details). The second object under study was The Helena Modrzejewska National Stary Theatre. The building was rebuilt in the style of Viennese Art Nouveau, so that it fully incorporates into the rest of buildings. Measurements included data obtained from a non-metric camera, Leica ScanStation scanner and DJI S 1000 multi-rotor.
Niezwykle intensywny rozwój technologii od początku obecnego stulecia, zaowocował wieloma innowacjami, również w dziedzinie geodezji i kartografii, a w szczególności w zakresie fotogrametrii i teledetekcji. Oprócz ewolucji znanych już form pomiarów jak przejście ze zobrazowań analogowych na cyfrowe, pojawiły się też nowe metody pozyskiwania danych przestrzennych jak skaning laserowy, bezzałogowe statki powietrzne czy cyfrowe kamery niemetryczne, będące przedmiotem niniejszego opracowania. Integracja tych danych stała się nowym narzędziem, które rozszerzyło dotychczasowe możliwości pomiarowe, jak również znalazło zastosowanie poza branżą geodezyjną, na przykład w modelowaniu 3D, archeologii czy konserwacji zabytków. Dzięki skaningowi otrzymujemy współrzędne niemal każdego punktu skanowanej powierzchni w dowolnym miejscu, nawet już po zakończeniu pomiaru i opuszczeniu obiektu. Otrzymujemy zatem pełną i szczegółową informację o wymiarach obiektu, o znajdującej się wewnątrz infrastrukturze niekiedy trudno dostępnej bądź skomplikowanej. Poziom zaawansowania technicznego aparatów cyfrowych pozwala już od kilkunastu lat na stosowanie ich z powodzeniem w fotogrametrii bliskiego zasięgu [27], a od niedawna także i w fotogrametrii lotniczej niskiego pułapu (bezzałogowe statki powietrzne). Bezzałogowe statki powietrzne okazują się świetnym narzędziem wspomagającym proces zbierania danych o wysokorozdzielczych metrycznych zdjęciach elewacji budynków. Do zrealizowania zamierzonego celu wybrano 2 różne obiekty testowe.
Źródło:
Archives of Civil Engineering; 2022, 68, 3; 481--500
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies