Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Tensorflow" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Electronic Toll Collector Framework
Autorzy:
Mujeeb, Abdul
Ahmed, Nisar
Arshed, Husnain
Khan, Farhan Ajmal
Powiązania:
https://bibliotekanauki.pl/articles/2022366.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
electronic toll collector
TensorFlow
Yolov2
image classification
analytics
centralized system
Opis:
Manual toll collection systems are obsolete due to time, fuel, and pollution issues and need to be replaced by new and better alternatives. Traditionally, governments have always employed people to collect toll, but the manual labor isn’t much effective when it comes to monitoring and efficiency. We took this problem and researched out an effective solution i.e., “Electronic Toll Collector Framework” which is a framework mainly for collection and monitoring of the toll fees collected by the toll plazas in the vicinity of metropolitan cities like Lahore or Karachi. The software can generate toll tax based on vehicle type. Additionally, it can also generate daily/monthly/yearly revenue reports. The framework can serve other purposes like monitoring of vehicles (by the law enforcement agencies) and generation of analytics. It can also serve as a backbone for the government departments who are having a hard time monitoring the revenue generated by the employers. There are two operational modes of the framework (partly manual and automatic). The partly manual approach uses TensorFlow backend, and the automatic approach uses Yolov2 backend. This work will be helpful in guiding future research and practical work in this domain.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 1; 294-302
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Towards a new deep learning algorithm based on GRU and CNN: NGRU
Autorzy:
Atassi, Abdelhamid
el Azami, Ikram
Powiązania:
https://bibliotekanauki.pl/articles/2141895.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
Convolutional Neural Network
CNN
Gated Recurrent Unit
GRU
SemEval
Twitter
word2vec
Keras
TensorFlow
Adadelta
Adam
soft-max
deep learning
Opis:
This paper describes our new deep learning system based on a comparison between GRU and CNN. Initially we start with the first system which uses Convolutional Neural Network (CNN) which we will compare with the second system which uses Gated Recurrent Unit (GRU). And through this comparison we propose a new system based on the positive points of the two previous systems. Therefore, this new system will take the right choice of hyper-parameters recommended by the authors of both systems. At the final stage we propose a method to apply this new system to the dataset of different languages (used especially in socials networks).
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2020, 14, 4; 45-47
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies