- Tytuł:
- Some Special Results for Square Pyramidal Graceful Graphs
- Autorzy:
- Mahendran, S.
- Powiązania:
- https://bibliotekanauki.pl/articles/1193411.pdf
- Data publikacji:
- 2021
- Wydawca:
- Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
- Tematy:
-
Square pyramidal graceful number
square pyramidal graceful graphs
square pyramidal graceful labeling - Opis:
- Numbers of the form (n(n+1)(2n+1))/6 for all n≥1 are called square pyramidal numbers. Let G be a graph with p vertices and q edges. Let τ : V(G) →{0, 1, 2… M_k} where M_k is the k^th square pyramidal number be an injective function. Define the function τ*:E(G)→{1,5,14,.., M_k} such that τ *(uv) = |τ (u)- τ (v)| for all edges uvϵE(G). If τ *(E(G)) is a sequence of distinct consecutive square pyramidal numbers {M_1,M_2, …, M_k}, then the function τ is said to be square pyramidal graceful labeling and the graph which admits such a labeling is called a square pyramidal graceful graph. In this paper, some special results for square pyramidal graceful graphs is studied.
- Źródło:
-
World Scientific News; 2021, 156; 147-160
2392-2192 - Pojawia się w:
- World Scientific News
- Dostawca treści:
- Biblioteka Nauki