Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jurassic limestone" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Building stones used in early mediaeval edifices of Krakow and geology of the area
Autorzy:
Bromowicz, J
Magiera, J.
Powiązania:
https://bibliotekanauki.pl/articles/184585.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Pre-Romanesque and Romanesque buildings
Wawel Hill
dimension stone
masonry
Jurassic limestone
Carpathian sandstones
Opis:
The early mediaeval period witnessed a considerable breakdown in masonry techniques and in architecture in the Polish territory: the application of stone and developing of skills of shaping rocks into regular cuboid stone bricks. Only local stones quarried within a distance of ca. 15 km from Krakow were used in early mediaeval edifices in the city. They were: two varieties of limestones (Upper Jurassic) and three varieties of sandstones of the Carpathian flysch (Cretaceous to Palaeogene). Sedimentary environments (facies) and post-sedimentary processes determined compactness, block divisibility and workability of stones, which, further on, determined their application. Thin bedded sandstone and platy limestone yielded easily workable and relatively small (few to a dozen of centimetres in length) and quite regular bricks used in the earliest buildings. Rocky limestone was a source of irregularly shaped clumps used initially as a filler of walls erected in the opus emplectum technique. Later, it was used also for cutting larger (few tens of centimetres), more regular blocks. Bedded limestone was a good material for obtaining larger (a dozen or two dozens of centimetres) regular bricks used widely throughout the whole early mediaeval period. Blocks (2 or more metres in length) of soft dimension Carpathian sandstone were used for shaping and carving large elements: tombstones, columns, volutes, epitaphs, etc. Techniques of quarrying and stone working developed considerable with time. Initially, slope scree and stone from demolished older ramparts were used. Later, quarries reached deeper beds which yielded larger bricks and blocks. Stone sources "migrated" with time too. The earliest places of excavation were located within the city, e.g. on the Wawel, Skałka and Krzemionki hills. When those deposits were exhausted, mining moved to more distant spots.
Źródło:
Geology, Geophysics and Environment; 2013, 39, 2; 95-112
2299-8004
2353-0790
Pojawia się w:
Geology, Geophysics and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of joints and micro-fractures on the limestone aggregate shape and quality
Wpływ ciosu i mikro-spękań na kształt ziaren i jakość kruszywa wapiennego
Autorzy:
Figarska-Warchoł, B.
Bromowicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/216355.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
kruszywo łamane
kształt ziaren
spękanie
właściwości mechaniczne
wapienie jurajskie
Wyżyna Krakowsko-Wieluńska
crushed aggregate
shape of grain
fracture
mechanical properties
Jurassic limestone
Kraków-Wieluń Upland
Opis:
The paper presents results of investigations on the influence of joint and micro-fractures on the shape of a crushed grain - one of the most important parameter of the quality of crushed aggregate. Three structural types of the Jurassic limestone exploited in the Nielepice deposit nearby Kraków (Poland) were analysed. Cuboidal samples of platy and bedded limestones formed as intra-bio-micrite and intra-bio-sparite were subjected to recurrent cycles of mechanical stress and freeze-thaw process with the aim of inducing fractures. Their directions and frequency were determined by the microscopic observation and by the measurements of longitudinal ultrasonic waves velocities. Crushed and fractionated rock material was used in investigation of grain shape. Three diameter of each grain were measured. Calculated ratios of elongation and flatness have been presented on the Zingg diagrams. Generally, grains of the crushed aggregate from Nielepice are flat, the most in the platy limestones. Isometric grains are less frequent in finer fractions. The structure and texture of rock affect significantly the shape of the finest grains. The shape and dihedral angles of aggregate grains have been compared to the elementary fracture cell, which resulted from the intersection of the joint surfaces observed in the quarry. The same shape is reproduced in the subsequent fractions of the grains. Thin sections were cut parallel to the directions of the main joint sets. Their investigation revealed micro-fractures elongated in the same directions. Distances between them range from the micrometers to centimeters. Changes of velocity of longitudinal ultrasonic waves triggered by rock fatigue process correspond with the shapes of grains of various fractions. Pre-existing cracks and their later opening may cause developing of specific shape of the grains. The influence of new fractures on the aggregate quality has been also stated by significant growth of water absorption measured before and after process of rock fatigue. The apparent density difference was smaller.
Artykuł przedstawia wyniki badań nad wpływem ciosu i mikrospękań na właściwości kruszywa rozpatrywanego jako jego kształt. Badaniom poddano trzy odmiany teksturalne wapieni jurajskich eksploatowanych ze złoża Nielepice w pobliżu Krakowa (Polska). Prostopadłościenne próby wapieni płytowych i uławiconych wykształcone jako intra-bio-mikryt i intra-bio-sparyt poddawano wielokrotnym cyklom ściskania i mrożenia w celu wywołania spękań. Kierunki ich pojawiania się oraz częstotliwość określano na podstawie obserwacji mikroskopowych oraz badań prędkości fal ultradźwiękowych w różnych kierunkach. Badania kształtu ziaren kruszywa wykonywano na podstawie materiału pokruszonego w laboratorium i podzielonego na frakcje. Dla każdego ziarna wykonano pomiar długości trzech prostopadłych do siebie osi. Obliczone na ich podstawie współczynniki wydłużenia i spłaszczenia przedstawiono na diagramach Zingga. Generalnie ziarna kruszywa łamanego z Nielepic wykazują spłaszczenie, szczególnie dla wapieni płytowych. Ilość ziaren izometrycznych zmniejsza się w drobniejszych frakcjach. W ziarnach najdrobniejszych na ich kształt wpływa w dużej mierze struktura i tekstura skały. Kształt i dwuścienne kąty ziaren kruszywa porównano z kształtem spękaniowej komórki elementarnej, wynikającym z przecięcia powierzchni spękań ciosowych pomierzonych w wyrobisku. Kształt ten jest powielany wielokrotnie w coraz mniejszych frakcjach. Szlify mikroskopowe zostały wycięte równolegle do kierunków głównych zespołów spękań. Ich badania wykazały obecność mikrospękań rozciągających się w tych kierunkach w odległościach od milimetrów do centymetrów. Tendencja zmian prędkości fal ultradźwiękowych materiału poddawanego męczeniu znajduje swoje odbicie w tendencji zmian kształtu kruszywa określanego dla różnych frakcji. Istnienie założonych spękań i ich późniejsze otwieranie może doprowadzić do powstania ziaren o określonym kształcie. Wpływ pojawiania się nowych spękań na jakość kruszywa został określony także poprzez istotny wzrost nasiąkliwości wagowej skał przed i po procesie ich męczenia. Różnica w gęstości pozornej była mniejsza.
Źródło:
Gospodarka Surowcami Mineralnymi; 2010, 26, 4; 89-108
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Zalew Balaton Quarry geosite in Trzebinia, southern Poland: an update of geological data
Autorzy:
Kamieniarz, S.
Powiązania:
https://bibliotekanauki.pl/articles/128345.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
closed quarry
Upper Jurassic
limestone
“Wielbłąd”
sarsen
Opis:
A development project of the Zalew Balaton area is being presently carried out. One of the project assumptions is to create a geological path across the object. However, detailed data about the geological structure of this place is not available. For this reason, the author has researched and updated the information about the rocks occurring in the walls of the old quarry. Primarily, terrain (textural and structural analysis, layers strike and dip measurements, geological boundaries delimitation) and laboratory analysis (X-Ray Powder Diffraction, microscopic rock samples analysis) were conducted. Collected data was afterwards compared with available literature. Within the steep slopes of excavation, strong-karsted, faulted Upper Jurassic (Oxfordian) carbonate sediments were revealed. These are massive, platy and crumpled limestone. These rocks could be deposited in changing conditions of sedimentation, when calm carbonate sedimentation was disturbed by underwater gravity flows, as demonstrated by their detrital character. One of the karst funnel on the northern slope was filled with Oligocene sand. As a result, groundwater fluctuations created a sarsen structure, popularly called the “Wielbłąd”. In relation to the planned geological path across the Zalew Balaton area, previous knowledge should be supplemented with new data, respectively processed and included on information panes, located within object. Plans of the path should pay attention to potential geotouristic safety, as well as to the geological values of the protected object, during its future modernization.
Źródło:
Geotourism / Geoturystyka; 2014, 2; 13-20
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A lost carbonate platform deciphered from clasts embedded in flysch: Štramberk-type limestones, Polish Outer Carpathians
Autorzy:
Hoffmann, Mariusz
Kołodziej, Bogusław
Kowal-Kasprzyk, Justyna
Powiązania:
https://bibliotekanauki.pl/articles/1835996.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
reefs
facies
Štramberk Limestone
Silesian Ridge
Jurassic
Cretaceous
Carpathian Basin
Polska
Opis:
Limestones designated the Štramberk-type are the most common carbonate exotic clasts (exotics) embedded in the uppermost Jurassic–Miocene flysch deposits of the Polish Outer Carpathians. About 80% of stratigraphically determinable carbonate exotics from the Silesian, Sub-Silesian and Skole units (nappes) are of Tithonian (mostly)–Berriasian (sporadically Valanginian) age. A study of these exotics revealed eight main facies types: coral-microbial boundstones (FT 1), microencruster-microbial-cement boundstones (FT 2), microbial and microbial-sponge boundstones (FT 3), detrital limestones (FT 4), foraminiferal-algal limestones (FT 5), peloidalbioclastic limestones (FT 6), ooid grainstones (FT 7), and mudstones-wackestones with calpionellids (FT 8). Štramberk-type limestones in Poland and the better known Štramberk Limestone in the Czech Republic are remnants of lost carbonate platforms, collectively designated the Štramberk Carbonate Platform. Narrow platforms were developed on intra-basinal, structural highs (some of them are generalized as the Silesian Ridge), with their morphology determined by Late Jurassic synsedimentary tectonics. An attempt was made to reconstruct the facies distribution on the Tithonian–earliest Cretaceous carbonate platform. In the inner platform, coral-microbial patch-reefs (FT 1) grew, while the upper slope of the platform was the depositional setting for the microencruster-microbial-cement boundstones (FT 2). Microbial and microbial-sponge boundstones (FT 3), analogous to the Oxfordian–Kimmeridgian boundstones of the northern Tethyan shelf (also present among exotics), were developed in a deeper setting. In the inner, open part of the platform, foraminiferal-algal limestones (FT 5) and peloidal-bioclastic limestones (FT 6) were deposited. Poorly sorted, detrital limestones (FT 4), including clastsupported breccias, were formed mainly in a peri-reefal environment and on the margin of the platform, in a high-energy setting. Ooid grainstones (FT 7), rarely represented in the exotics, were formed on the platform margin. Mudstones-wackestones with calpionellids (FT 8) were deposited in a deeper part of the platform slope and/or in a basinal setting. In tectonic grabens, between ridges with attached carbonate platforms, sedimentation of the pelagic (analogous to FT 8) and allodapic (“pre-flysch”) Cieszyn Limestone Formation took place. The most common facies are FT 4 and FT 1. Sedimentation on the Štramberk Carbonate Platform terminated in the earliest Cretaceous, when the platform was destroyed and drowned. It is recorded in a few exotics as thin, neptunian dykes (and large dykes in the Štramberk Limestone), filled with dark, deep-water limestones. Reefal facies of the Štramberk Carbonate Platform share similarities in several respects (e.g., the presence of the microencrustermicrobial-cement boundstones) with reefs of other intra-Tethyan carbonate platforms, but clearly differ from palaeogeographically close reefs and coral-bearing facies of the epicontinental Tethyan shelf (e.g., coeval limestones from the subsurface of the Carpathian Foredeep and the Lublin Upland in Poland; the Ernstbrunn Limestone in Austria and Czech Republic). Corals in the Štramberk Limestone and Štramberk-type limestones are the world’s most diverse coral assemblages of the Jurassic–Cretaceous transition. The intra-basinal ridge (ridges), traditionally called the Silesian Cordillera, which evolved through time from an emerged part of the Upper Silesian Massif to an accretionary prism, formed the most important provenance area for carbonate exotic clasts in the flysch of the Silesian Series. They are especially common in the Lower Cretaceous Hradiště Formation and the Upper Cretaceous–Paleocene Istebna Formation. The Baška-Inwałd 204 M. HOFFMANN Et Al. In the Polish Outer Carpathians, shallow-water carbonate sedimentation is recorded only by carbonate clasts, redeposited bioclasts, and very rare, small, unrooted, poorly exposed klippen. Clasts of limestones are exotic to the dominant siliciclastic, uppermost Jurassic–Miocene flysch deposits. They were derived from extrabasinal and intra-basinal source areas of the Carpathian rocks, which periodically emerged and were destroyed. Such rocks were described as “exotic” since the 19th century (“exotischen Graniten”, “exotische Blöcke”; Morlot, 1847; Hohenegger, 1861). In the general geological literature, the term “exotic clasts” is usually used (Flügel, 2010, p. 172), whereas in the Polish geological literature, the term “exotics” (Polish “egzotyki” including also carbonate exotics), is also commonly applied. On the basis of fossils, facies and microfacies, these clasts (pebbles, rarely blocks) are mostly described as Devonian–Carboniferous (Malik, 1978, 1979; Burtan et al., 1983; Tomaś et al., 2004) and Upper Jurassic–lowermost Cretaceous (the present paper and references therein), more rarely Middle Jurassic (Książkiewicz, 1935, 1956a; Barczyk, 1998; Olszewska and Wieczorek, 2001), Early Cretaceous (Oszczypko et al., 1992, 2006, 2020; Krobicki et al., 2005), Late Cretaceous (Książkiewicz, 1956a; Gasiński, 1998) and Palaeogene in age (Leszczyński, 1978; Rajchel and Myszkowska, 1998; Leszczyński et al., 2012; Minor-Wróblewska, 2017). At the beginning of these studies, the focus was on small, unrooted klippen, namely the Andrychów Klippen (called also Klippes) near Wadowice (Zeuschner, 1849; Hohenegger, 1861; Uhlig, 1904; Książkiewicz, 1935, 1971b; Nowak, 1976; Gasiński, 1998; Olszewska and Wieczorek, 2001), and in Kruhel Wielki, near Przemyśl (Niedźwiedzki, 1876; Wójcik, 1907, 1913, 1914; Bukowy and Geroch, 1956; Morycowa, 1988; Olszewska et al., 2009), now poorly exposed. Subsequently, exotic pebbles, much more common and providing data on more facies, were studied more frequently. The first attempt to describe exotics, including crystalline rocks, was presented by Nowak (1927). Jurassic–Cretaceous carbonate exotics at Bachowice, containing facies unknown at other localities in the Polish Outer Carpathians, were described by Książkiewicz (1956a). The preliminary results of studies, which encompassed the entire spectrum of carbonate exotics from the western part of the Polish Outer Carpathians, were presented by Burtan et al. (1984). Malik (1978, 1979) described both Palaeozoic and Mesozoic carbonate clasts in the Hradiště Sandstone of the Silesian Unit, but other studies were mostly concerned with the Štramberk-type limestones from selected outcrops. The studies of these limestones, if concerned with exotics at many localities, were focused on their fossil content (e.g., Kołodziej, 2003a; Bucur et al., 2005; Ivanova and Kołodziej, 2010; Kowal-Kasprzyk, 2014, 2018) or presented only the preliminary results of facies studies (e.g., Hoffmann and Kołodziej, 2008; Hoffmann et al., 2008). Carbonate platforms, the existence of which was deciphered from detrital carbonate components, are called lost carbonate platforms (e.g., Belka et al., 1996; Flügel, 2010; Kukoč et al., 2012). Clasts and other shallowwater components are, metaphorically, witnesses to lost carbonate factories (the term is taken from Coletti et al., 2015). Analyses of the age and lithology of exotic clasts have been applied in the reconstruction of the provenance areas of the clasts and their palaeogeography and the development of the sedimentary sequences of the Polish Outer Carpathians (e.g., Książkiewicz, 1956b, 1962, 1965; Unrug, 1968; Oszczypko, 1975; Oszczypko et al., 1992, 2006; Hoffmann, 2001; Krobicki, 2004; Słomka et al., 2004; Malata et al., 2006; Poprawa and Malata, 2006; Poprawa et al., 2006a, b; Strzeboński et al., 2017; Kowal-Kasprzyk et al., 2020). Štramberk-type limestones are most common among the exotics. It is a field term that refers to limestones, mostly beige in colour, that are supposed to be the age and facies equivalents of the Tithonian–lower Berriasian Štramberk Limestone in Moravia (Czech Republic; Eliáš and Eliášová, 1984; Picha et al., 2006). The Štramberk Limestone and the Štramberk-type limestones of both countries were deposited on platforms, attached to the intrabasinal ridges and margins of the basin of the Outer Carpathians. These platforms are collectively termed the Štramberk Carbonate Platform. The terms “Štramberk Limestone” and “Štramberk-type limestones” have been widely used in the area of the former Austro-Hungarian Empire for the field description of shallow-water limestones of assumed Late Jurassic age, usually occurring within flysch deposits of the Outer Carpathians. Upper Jurassic–lowermost Cretaceous shallow-water limestones in Romania (commonly forming mountains or ridges, e.g., Pleş et al., 2013, 2016), in Bulgaria and Serbia (Tchoumatchenco et al., 2006), and Ukraine (Krajewski and Schlagintweit, 2018), and in Turkey (Masse et al., 2015) sometimes are referred to as the Štramberk-type limestones as well. In the Austrian-German literature similar limestones in the Alps are known as the Plassen Limestone (e.g., Steiger and Wurm, 1980; Schlagintweit et al., 2005). Biostratigraphic studies revealed that some carbonate clasts, accounting for several percent of the exotics and commonly Ridge and the Sub-Silesian Ridge were the source areas for clasts from the Silesian and Sub-Silesian units (e.g., in the Hradiště Formation), while the Northern (Marginal) Ridge was the source for clasts from the Skole Unit (e.g., in the Maastrichtian–Paleocene Ropianka Formation).
Źródło:
Annales Societatis Geologorum Poloniae; 2021, 91, 3; 203-251
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new family of giant Jurassic–Cretaceous littorinoid gastropods from the northern Tethys shelf
Autorzy:
Harzhauser, M.
Schneider, S.
Powiązania:
https://bibliotekanauki.pl/articles/945827.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Instytut Paleobiologii PAN
Tematy:
mollusca
gastropoda
leviathania
carbonate platform
body size
jurassic–cretaceous
tethys
tithonian
ernstbrunn limestone
austria
Opis:
The giant, up to 40 cm high littorinoid gastropods from the Middle Tithonian to Berriasian carbonates of the Alpine-Carpathian northern Tethys margin are assigned to the genus Leviathania. The genus is distributed from Spain to the Caucasus. Some species formed dense populations in the wide-spread, highly productive lagoonal environments situated on the carbonate platforms of Ernstbrunn (Austria), Mikulov, Štramberk (both Czech Republic), and Nyzhniv (Ukraine). The conspicuous morphology, comprising very large shells with strongly angulated whorls and especially the phaneromphalous umbilicus exclude the traditional attributions of this genus to the families Purpurinidae and Purpuroideidae. Therefore, we establish the new family Leviathaniidae for the type genus Leviathania. The family comprises the largest pre-Cenozoic gastropods, represented by a yet unnamed gigantic Leviathania species from the latest Tithonian or early Berriasian of Ukraine. The gastropods are tentatively assumed to have fed omnivorous, i.e., on a mixed detrital-algal diet, based on comparable population densities as the large modern queen conch Lobatusgigas from the Caribbean Sea.
Źródło:
Acta Palaeontologica Polonica; 2014, 59, 2; 367-378
0567-7920
Pojawia się w:
Acta Palaeontologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integrated biostratigraphy and carbon isotope stratigraphy of the Upper Jurassic shallow water carbonates of the High-Tatric Unit (Mały Giewont area, Western Tatra Mountains, Poland)
Autorzy:
Pszczółkowski, A.
Grabowski, J.
Wilamowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/2060534.pdf
Data publikacji:
2016
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
biostratigraphy
carbon isotope stratigraphy
Raptawicka Turnia Limestone Formation
Upper Jurassic
High-Tatric Succession
Tatra Mts.
Opis:
New biostratigraphical and carbon isotope data are presented for the Upper Jurassic limestones of the Raptawicka Turnia Limestone Formation (High Tatric unit, Western Tatra Mountains, Poland) from the Mały Giewont area. The Kimmeridgian, lower Tithonian and lower part of the upper Tithonian have been identified on the basis of calcareous dinocysts and calpionellids. Eight microfossil biozones are distinguished: acme Fibrata, acme Parvula, Moluccana, Borzai, Tithonica acme Pulla(?), Malmica, Chitinoidella and Crassicollaria (pars). The Kimmeridgian/Tithonian boundary is indicated at the top of the Borzai Zone 76 m above the base of the Raptawicka Turnia Limestone Formation. The microfossil stratigraphy suggests the late Early Kimmeridgian age (acme Parvula Zone) of the ammonites described by Passendorfer (1928). The taxon Taramelliceras ex gr. compsum found 14 m above those ammonites is Late Kimmeridgian in age. Seven microfacies types (MF) are identified in the Upper Jurassic limestones of the Mały Giewont area. The Bositra-Saccocomidae MF occurs across the Lower-Upper Kimmeridgian boundary. The planktonic and benthic foraminifera occur in the Upper Jurassic deposits of the Raptawicka Turnia Limestone Formation. The genera Lenticulina Lamarck and Spirillina Ehrenberg are common in the Kimmeridgian and Tithonian limestones. The palaeobathymetric evolution of the Kimmeridgian-Tithonian deposition recorded in the Mały Giewont sections reveals: the transgressive episode at the Lower/Upper Kimmeridgian boundary interval, the transgression peak during the Early Tithonian (Malmica Zone) and gradual shallowing of the High-Tatric swell in the Late Tithonian. Integrated isotope stratigraphy and biostratigraphy enabled correlation with the pelagic section of the Sub-Tatric succession in the Długa Valley section. The middle part of the Raptawicka Turnia Limestone Formation (Upper Kimmeridgian) might be correlated with the upper part of the Czajakowa Radiolarite Formation (red radiolarites) and Czorsztyn Formation in the Długa Valley section. The upper part of the Raptawicka Turnia Limestone Formation of Early Tithonian age corresponds mostly to the Jasenina Formation. The overall similarity of the δ13C decreasing values recorded in the Kimmeridgian–earliest Tithonian interval of the Mały Giewont (this study) and Długa Valley sections indicates that the generally shallow-water deposits of the Raptawicka Turnia Limestone Formation accumulated below the zone influenced by changes in the composition of marine water caused, for instance, by intense rainfalls.
Źródło:
Geological Quarterly; 2016, 60, 4; 893--918
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new large-bodied theropod dinosaur from the Middle Jurassic of Warwickshire, United Kingdom
Autorzy:
Benson, R.B.J.
Radley, J.D.
Powiązania:
https://bibliotekanauki.pl/articles/22445.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Paleobiologii PAN
Tematy:
large-bodied dinosaur
dinosaur
new dinosaur
theropod dinosaur
Middle Jurassic
Jurassic
Warwickshire
United Kingdom
paleontology
Dinosauria
Theropoda
Tetanurae
Megalosaurus
Cruxicheiros
Bathonian
Chipping Norton Limestone Formation
Opis:
Previously undocumented postcranial material from the Chipping Norton Limestone Formation (Middle Jurassic: Lower Bathonian) of Cross Hands Quarry, near Little Compton, Warwickshire represents a new large−bodied theropod dinosaur, distinct from the contemporaneous Megalosaurus bucklandii. Cruxicheiros newmanorum gen. et sp. nov. is diagnosed by a single autapomorphy, the presence of a proximomedially inclined ridge within the groove that marks the lateral extent of the posterior flange of the femoral caput (trochanteric fossa). C. newmanorum shows three tetanuran features: widely separated cervical zygapophyses, a swollen ridge on the lateral surface of the iliac blade and an anterior spur of the caudal neural spines. However, due to fragmentary preservation its affinities within Tetanurae remain uncertain: phylogenetic analysis places it as the most basal tetanuran, the most basal megalosauroid (= spinosauroid) or the most basal neotetanuran.
Źródło:
Acta Palaeontologica Polonica; 2010, 55, 1
0567-7920
Pojawia się w:
Acta Palaeontologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies