Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dependent structure" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
DNA replication stress-induced biphasic nuclear structures in Allium cepa root meristem cells
Autorzy:
Zabka, A.
Polit, J.T.
Maszewski, J.
Powiązania:
https://bibliotekanauki.pl/articles/951326.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
conference
DNA replication
cyclin-dependent kinase
cell division
biphasic nuclear structure
Allium cepa
root meristem cell
premature chromosome condensation
Źródło:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2013, 94, 3
0860-7796
Pojawia się w:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel reliability estimation method of multi-state system based on structure learning algorithm
Nowatorska metoda oceny niezawodności systemów wielostanowych w oparciu o algorytm uczenia struktury
Autorzy:
Li, Zhifeng
Wang, Zili
Ren, Yi
Yang, Dezhen
Lv, Xing
Powiązania:
https://bibliotekanauki.pl/articles/301718.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
reliability analysis
Bayesian network
structure learning
multi-state system (MSS)
dependent failure
analiza niezawodności
sieć bayesowska
uczenie struktury
system wielostanowy
uszkodzenie zależne
Opis:
Traditional reliability models, such as fault tree analysis (FTA) and reliability block diagram (RBD), are typically constructed with reference to the function principle graph that is produced by system engineers, which requires substantial time and effort. In addition, the quality and correctness of the models depend on the ability and experience of the engineers and the models are difficult to verify. With the development of data acquisition, data mining and system modeling techniques, the operational data of a complex system considering multi-state, dependent behavior can be obtained and analyzed automatically. In this paper, we present a method that is based on the K2 algorithm for establishing a Bayesian network (BN) for estimating the reliability of a multi-state system with dependent behavior. Facilitated by BN tools, the reliability modeling and the reliability estimation can be conducted automatically. An illustrative example is used to demonstrate the performance of the method.
Tradycyjne modele niezawodności, takie jak analiza drzewa błędów (FTA) czy schemat blokowy niezawodności (RBD), buduje się zazwyczaj w oparciu o tworzone przez inżynierów systemowych schematy zasad działania systemu, których przygotowanie wymaga dużych nakładów czasu i pracy. Jakość i poprawność tych modeli zależy od umiejętności i doświadczenia inżynierów, a same modele są trudne do zweryfikowania. Dzięki rozwojowi technik akwizycji i eksploracji danych oraz modelowania systemów, dane operacyjne złożonego systemu uwzględniające jego zależne, wielostanowe zachowania mogą być pozyskiwane i analizowane automatycznie. W artykule przedstawiono metodę konstrukcji sieci bayesowskiej (BN) opartą na algorytmie K2, która pozwala na ocenę niezawodności systemu wielostanowego o zachowaniach zależnych. Dzięki narzędziom BN, modelowanie i szacowanie niezawodności może odbywać się automatycznie. Działanie omawianej metody zilustrowano na podstawie przykładu.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 1; 170-178
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies