Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "2-domination" wg kryterium: Temat


Tytuł:
Total Roman {2}-Dominating Functions in Graphs
Autorzy:
Ahangar, H. Abdollahzadeh
Chellali, M.
Sheikholeslami, S.M.
Valenzuela-Tripodoro, J.C.
Powiązania:
https://bibliotekanauki.pl/articles/32304142.pdf
Data publikacji:
2022-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Roman domination
Roman {2}-domination
total Roman {2}-domination
Opis:
A Roman {2}-dominating function (R2F) is a function f : V → {0, 1, 2} with the property that for every vertex v ∈ V with f(v) = 0 there is a neighbor u of v with f(u) = 2, or there are two neighbors x, y of v with f(x) = f(y) = 1. A total Roman {2}-dominating function (TR2DF) is an R2F f such that the set of vertices with f(v) > 0 induce a subgraph with no isolated vertices. The weight of a TR2DF is the sum of its function values over all vertices, and the minimum weight of a TR2DF of G is the total Roman {2}-domination number γtR2(G). In this paper, we initiate the study of total Roman {2}-dominating functions, where properties are established. Moreover, we present various bounds on the total Roman {2}-domination number. We also show that the decision problem associated with γtR2(G) is possible to compute this parameter in linear time for bounded clique-width graphs (including trees).
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 3; 937-958
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trees whose 2-domination subdivision number is 2
Autorzy:
Atapour, M.
Sheikholeslami, S. M.
Khodkar, A.
Powiązania:
https://bibliotekanauki.pl/articles/254847.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
2-dominating set
2-domination number
2-domination subdivision numbe
Opis:
A set S of vertices in a graph G = (V,E) is a 2-dominating set if every vertex of V \ S is adjacent to at least two vertices of S. The 2-domination number of a graph G, denoted by γ2(G), is the minimum size of a 2-dominating set of G. The 2-domination subdivision number sdγ2 (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the 2-domination number. The authors have recently proved that for any tree T of order at least 3, 1 ≤ sdγ2 (T ) ≤ 2. In this paper we provide a constructive characterization of the trees whose 2-domination subdivision number is 2.
Źródło:
Opuscula Mathematica; 2012, 32, 3; 423-437
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Roman {2}-Domination Problem in Graphs
Autorzy:
Chen, Hangdi
Lu, Changhong
Powiązania:
https://bibliotekanauki.pl/articles/32314051.pdf
Data publikacji:
2022-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Roman {2}-domination
domination
algorithms
Opis:
For a graph G = (V, E), a Roman {2}-dominating function (R2DF) f : V → {0, 1, 2} has the property that for every vertex v ∈ V with f(v) = 0, either there exists a neighbor u ∈ N(v), with f(u) = 2, or at least two neighbors x, y ∈ N(v) having f(x) = f(y) = 1. The weight of an R2DF f is the sum f(V) = ∑v∈V f(v), and the minimum weight of an R2DF on G is the Roman {2}-domination number γ{R2}(G). An R2DF is independent if the set of vertices having positive function values is an independent set. The independent Roman {2}-domination number i{R2}(G) is the minimum weight of an independent Roman {2}-dominating function on G. In this paper, we show that the decision problem associated with γ{R2}(G) is NP-complete even when restricted to split graphs. We design a linear time algorithm for computing the value of i{R2}(T) in any tree T, which answers an open problem raised by Rahmouni and Chellali [Independent Roman {2}-domination in graphs, Discrete Appl. Math. 236 (2018) 408–414]. Moreover, we present a linear time algorithm for computing the value of γ{R2}(G) in any block graph G, which is a generalization of trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 2; 641-660
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spanning Trees with Disjoint Dominating and 2-Dominating Sets
Autorzy:
Miotk, Mateusz
Żyliński, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/32361736.pdf
Data publikacji:
2022-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
2-domination
spanning tree
Opis:
In this paper, we provide a structural characterization of graphs having a spanning tree with disjoint dominating and 2-dominating sets.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 1; 299-308
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Graphs with Disjoint Dominating and 2-Dominating Sets
Autorzy:
Henning, Michael A.
Rall, Douglas F.
Powiązania:
https://bibliotekanauki.pl/articles/30146715.pdf
Data publikacji:
2013-03-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
2-domination
vertex partition
Opis:
A DD2-pair of a graph G is a pair (D,D2) of disjoint sets of vertices of G such that D is a dominating set and D2 is a 2-dominating set of G. Although there are infinitely many graphs that do not contain a DD2-pair, we show that every graph with minimum degree at least two has a DD2-pair. We provide a constructive characterization of trees that have a DD2-pair and show that K3,3 is the only connected graph with minimum degree at least three for which D ∪ D2 necessarily contains all vertices of the graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 1; 139-146
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterization of block graphs with equal 2-domination number and domination number plus one
Autorzy:
Hansberg, Adriana
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/743677.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
2-domination
multiple domination
block graph
Opis:
Let G be a simple graph, and let p be a positive integer. A subset D ⊆ V(G) is a p-dominating set of the graph G, if every vertex v ∈ V(G)-D is adjacent with at least p vertices of D. The p-domination number γₚ(G) is the minimum cardinality among the p-dominating sets of G. Note that the 1-domination number γ₁(G) is the usual domination number γ(G).
If G is a nontrivial connected block graph, then we show that γ₂(G) ≥ γ(G)+1, and we characterize all connected block graphs with γ₂(G) = γ(G)+1. Our results generalize those of Volkmann [12] for trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2007, 27, 1; 93-103
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterization of trees with equal 2-domination number and domination number plus two
Autorzy:
Chellali, Mustapha
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/743587.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
2-domination number
domination number
trees
Opis:
Let G = (V(G),E(G)) be a simple graph, and let k be a positive integer. A subset D of V(G) is a k-dominating set if every vertex of V(G) - D is dominated at least k times by D. The k-domination number γₖ(G) is the minimum cardinality of a k-dominating set of G. In [5] Volkmann showed that for every nontrivial tree T, γ₂(T) ≥ γ₁(T)+1 and characterized extremal trees attaining this bound. In this paper we characterize all trees T with γ₂(T) = γ₁(T)+2.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 4; 687-697
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the (2,2)-domination number of trees
Autorzy:
Lu, You
Hou, Xinmin
Xu, Jun-Ming
Powiązania:
https://bibliotekanauki.pl/articles/744559.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination number
total domination number
(2,2)-domination number
Opis:
Let γ(G) and $γ_{2,2}(G)$ denote the domination number and (2,2)-domination number of a graph G, respectively. In this paper, for any nontrivial tree T, we show that $(2(γ(T)+1))/3 ≤ γ_{2,2}(T) ≤ 2γ(T)$. Moreover, we characterize all the trees achieving the equalities.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 2; 185-199
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Roman {2}-Bondage Number of a Graph
Autorzy:
Moradi, Ahmad
Mojdeh, Doost Ali
Sharifi, Omid
Powiązania:
https://bibliotekanauki.pl/articles/32083773.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
Roman {2}-domination
Roman {2}-bondage number
Opis:
For a given graph G=(V, E), a Roman {2}-dominating function f : V (G) → {0, 1, 2} has the property that for every vertex u with f(u) = 0, either u is adjacent to a vertex assigned 2 under f, or is adjacent to at least two vertices assigned 1 under f. The Roman {2}-domination number of G, γ{R2}(G), is the minimum of Σu∈V (G) f(u) over all such functions. In this paper, we initiate the study of the problem of finding Roman {2}-bondage number of G. The Roman {2}-bondage number of G, b{R2}, is defined as the cardinality of a smallest edge set E′ ⊆ E for which γ{R2}(G − E′) > γ{R2}(G). We first demonstrate complexity status of the problem by proving that the problem is NP-Hard. Then, we derive useful parametric as well as fixed upper bounds on the Roman {2}-bondage number of G. Specifically, it is known that the Roman bondage number of every planar graph does not exceed 15 (see [S. Akbari, M. Khatirinejad and S. Qajar, A note on the Roman bondage number of planar graphs, Graphs Combin. 29 (2013) 327–331]). We show that same bound will be preserved while computing the Roman {2}-bondage number of such graphs. The paper is then concluded by computing exact value of the parameter for some classes of graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 255-268
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A characterization of (γₜ,γ₂)-trees
Autorzy:
Lu, You
Hou, Xinmin
Xu, Jun-Ming
Li, Ning
Powiązania:
https://bibliotekanauki.pl/articles/744036.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
total domination
2-domination
(λ,μ)-tree
Opis:
Let γₜ(G) and γ₂(G) be the total domination number and the 2-domination number of a graph G, respectively. It has been shown that: γₜ(T) ≤ γ₂(T) for any tree T. In this paper, we provide a constructive characterization of those trees with equal total domination number and 2-domination number.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 3; 425-435
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trees with equal 2-domination and 2-independence numbers
Autorzy:
Chellali, Mustapha
Meddah, Nacéra
Powiązania:
https://bibliotekanauki.pl/articles/743338.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
2-domination number
2-independence number
trees
Opis:
Let G = (V,E) be a graph. A subset S of V is a 2-dominating set if every vertex of V-S is dominated at least 2 times, and S is a 2-independent set of G if every vertex of S has at most one neighbor in S. The minimum cardinality of a 2-dominating set a of G is the 2-domination number γ₂(G) and the maximum cardinality of a 2-independent set of G is the 2-independence number β₂(G). Fink and Jacobson proved that γ₂(G) ≤ β₂(G) for every graph G. In this paper we provide a constructive characterization of trees with equal 2-domination and 2-independence numbers.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 2; 263-270
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Relating 2-Rainbow Domination To Roman Domination
Autorzy:
Alvarado, José D.
Dantas, Simone
Rautenbach, Dieter
Powiązania:
https://bibliotekanauki.pl/articles/31341598.pdf
Data publikacji:
2017-11-27
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
2-rainbow domination
Roman domination
Opis:
For a graph $G$, let $ \gamma_R (G)$ and $ \gamma_{r2} (G) $ denote the Roman domination number of $G$ and the 2-rainbow domination number of $G$, respectively. It is known that $ \gamma_{r2} (G) \le \gamma_R(G) \le 3/2 \gamma_{r2} (G) $. Fujita and Furuya [Difference between 2-rainbow domination and Roman domination in graphs, Discrete Appl. Math. 161 (2013) 806-812] present some kind of characterization of the graphs $G$ for which $ \gamma_R (G) − \gamma_{r2} (G) = k $ for some integer $k$. Unfortunately, their result does not lead to an algorithm that allows to recognize these graphs efficiently. We show that for every fixed non-negative integer $k$, the recognition of the connected $ K_4$-free graphs $G$ with $ \gamma_R (G) − \gamma_{r2} (G) = k $ is NP-hard, which implies that there is most likely no good characterization of these graphs. We characterize the graphs $ G $ such that $ \gamma_{r2} (H) = \gamma_R (H) $ for every induced subgraph $ H $ of $ G $, and collect several properties of the graphs $ G $ with $ \gamma_R (G) = 3/2 \gamma_{r2} (G) $.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 4; 953-961
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on the 2-domination number in cactus graphs
Autorzy:
Chellali, M.
Powiązania:
https://bibliotekanauki.pl/articles/254915.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
2-domination number
total domination number
independence number
cactus graphs
trees
Opis:
A 2-dominating set of a graph G is a set D of vertices of G such that every vertex not in S is dominated at least twice. The minimum cardinality of a 2-dominating set of G is the 2-domination number γ2(G). We show that if G is a nontrivial connected cactus graph with k(G) even cycles (k(G) ≥ 0), then γ2(G) ≥ γt(G) - k(G), and if G is a graph of order n with at most one cycle, then γ2(G) ≥ (n + l - s)/2 improving Fink and Jacobson's lower bound for trees with l > s, where γt(G), l and s are the total domination number, the number of leaves and support vertices of G, respectively. We also show that if T is a tree of order n ≥ 3, then γ2(T) ≤ β(T) + s - 1, where β(T) is the independence number of T.
Źródło:
Opuscula Mathematica; 2006, 26, 1; 5-12
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Criticality indices of 2-rainbow domination of paths and cycles
Autorzy:
Bouchou, A.
Blidia, M.
Powiązania:
https://bibliotekanauki.pl/articles/255150.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
2-rainbow domination number
criticality index
Opis:
A 2-rainbow dominating function of a graph G (V(G), E(G)) is a function ƒ that assigns to each vertex a set of colors chosen from the set {1,2} so that for each vertex with ƒ (v) = ∅ we have [formula].The weight of a 2RDF ƒ is defined as [formula] minimum weight of a 2RDF is called the 2-rainbow domination number of G, denoted by [formula].The vertex criticality index of a 2-rainbow domination of a graph G is defined as [formula] the edge removal criticality index of a 2-rainbow domination of a graph G is defined as [formula] and the edge addition of a 2-rainbow domination criticality index of G is defined as [formula] where G is the complement graph of G. In this paper, we determine the criticality indices of paths and cycles.
Źródło:
Opuscula Mathematica; 2016, 36, 5; 563-574
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Total 2-Rainbow Domination Numbers of Trees
Autorzy:
Ahangar, H. Abdollahzadeh
Amjadi, J.
Chellali, M.
Nazari-Moghaddam, S.
Sheikholeslami, S.M.
Powiązania:
https://bibliotekanauki.pl/articles/32083855.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
2-rainbow dominating function
2-rainbow domination number
total 2-rainbow dominating function
total 2-rainbow domination number
Opis:
A 2-rainbow dominating function (2RDF) of a graph $G = (V(G), E(G))$ is a function $f$ from the vertex set $V(G)$ to the set of all subsets of the set {1, 2} such that for every vertex $v ∈ V(G)$ with $f(v) = ∅$ the condition \(\bigcup_{u∈N(v)}f(u) = \{1, 2\}\) is fulfilled, where $N(v)$ is the open neighborhood of $v$. A total 2-rainbow dominating function $f$ of a graph with no isolated vertices is a 2RDF with the additional condition that the subgraph of $G$ induced by $\{v ∈ V (G) | f(v) ≠∅\}$ has no isolated vertex. The total 2-rainbow domination number, $\gamma_{tr2}(G)$, is the minimum weight of a total 2-rainbow dominating function of $G$. In this paper, we establish some sharp upper and lower bounds on the total 2-rainbow domination number of a tree. Moreover, we show that the decision problem associated with $\gamma_{tr2}(G)$ is NP-complete for bipartite and chordal graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 345-364
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies