Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ylinen, R." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Polynomial systems theory applied to the analysis and design of multidimensional systems
Autorzy:
Hatonen, J.
Ylinen, R.
Powiązania:
https://bibliotekanauki.pl/articles/908252.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
informatyka
nD systems
module of fractions
partial differential equations
polynomial systems theory
Opis:
The use of a principal ideal domain structure for the analysis and design of multidimensional systems is discussed. As a first step it is shown that a lattice structure can be introduced for IO-relations generated by polynomial matrices in a signal space X (an Abelian group). It is assumed that the matrices take values in a polynomial ring F[p] where F is a field such that F[p] is a commutative subring of the ring of endomorphisms of X. After that it is analysed when a given F[p] acting on X can be extended to its field of fractions F(p). The conditions on the pair (F[p],X) are quite restrictive, i.e. each non-zero a(p)\in F[p] has to be an automorphism on X before the extension is possible. However, when this condition is met, say for operators { p1,p2,..., pn-1}, a polynomial ring F[p1,p2,...,pn] acting on X can be extended to F(p1,p2,..., pn-1)[pn], resulting in a principal ideal domain structure. Hence in this case all the rigorous principles of `ordinary' polynomial systems theory for the analysis and design of systems is applicable. As an example, both an observer for estimating non-measurable outputs and a stabilizing controller for a distributed parameter system are designed.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2003, 13, 1; 15-27
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies