Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wolkiewicz, M." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Diagnostic system for induction motor stator winding faults based on axial flux
Autorzy:
Wolkiewicz, M.
Skowron, M.
Powiązania:
https://bibliotekanauki.pl/articles/1193462.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
stator winding fault
inter-turn short circuit
axial flux
diagnostic system
Opis:
The article presents the results of research on the use of an axial flux in the diagnostics of induction motor stator winding fed by a frequency converter. Voltage signal waveforms proportional to the axial flux were recorded during motor operation under various conditions and were analyzed with regard to the detection of stator winding short circuits. The taps of the selected coil turns of stator phases were introduced into the tested motor, which allowed to physical modelling inter-turn short circuits. The structure and operation of the computer system used to monitor the state of induction motor windings were discussed. The developed diagnostic system was made in the National Instruments LabVIEW environment. The analysis of faults of the axial flux was made in the detection of induction motor stator winding. The results of experimental research conducted using the developed diagnostic system have also been presented.
Źródło:
Power Electronics and Drives; 2017, 2, 37/2; 137-150
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stator winding fault diagnosis of induction motor operating under the field-oriented control with convolutional neural networks
Autorzy:
Skowron, M.
Wolkiewicz, M.
Tarchała, G.
Powiązania:
https://bibliotekanauki.pl/articles/200241.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
diagnostics
stator faults
field-oriented control
convolutional neural networks
Opis:
In this paper deep neural networks are proposed to diagnose inter-turn short-circuits of induction motor stator windings operating under the Direct Field Oriented Control method. A convolutional neural network (CNN), trained with a Stochastic Gradient Descent with Momentum method is used. This kind of deep-trained neural network allows to significantly accelerate the diagnostic process compared to the traditional methods based on the Fast Fourier Transform as well as it does not require stationary operating conditions. To assess the effectiveness of the applied CNN-based detectors, the tests were carried out for variable load conditions and different values of the supply voltage frequency. Experimental results of the proposed induction motor fault detection system are presented and discussed.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2020, 68, 5; 1039-1048
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stator windings condition diagnosis of voltage inverter-fed induction motor in open and closed-loop control structures
Autorzy:
Wolkiewicz, M.
Tarchała, G.
Kowalski, C. T.
Powiązania:
https://bibliotekanauki.pl/articles/141208.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
induction motor
shorted turns
scalar control
vector control DFOC
Opis:
This paper deals with detection of the stator windings shorted turns in an induction motor drive working under open (scalar) and closed loop (Direct Field Oriented DFO) control structures. In order to detect the early stage of stator winding fault, the analysis of symmetrical and principal components of stator voltages and currents is used. Experimental results obtained from a specially prepared induction motor are presented.
Źródło:
Archives of Electrical Engineering; 2015, 64, 1; 67-79
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies