Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Surma, Jerzy." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Attack vectors on supervised machine learning systems in business applications
Wektory ataków na nadzorowane systemy uczące się w zastosowaniach biznesowych
Autorzy:
Surma, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/1182306.pdf
Data publikacji:
2020
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
adversarial machine learning
supervised machine learning
security of machine
learning systems
antagonistyczne maszynowe uczenie się
nadzorowane maszynowe uczenie się
bezpieczeństwo systemów uczących się
Opis:
Systemy uczące się stają się coraz bardziej popularne i mają wiele praktycznych zastosowań. Szczególnie istotny i szybko rozwijający się jest obszar zastosowań biznesowych. W tym kontekście bezpieczeństwo informacyjne takich systemów jest niezwykle ważne, zwłaszcza przy dużej aktywności zorganizowanych grup cyberprzestępców. W artykule przedstawiono taksonomię intencjonalnych ataków na systemy uczące się pod nadzorem, które to są obecnie najpopularniejsze w zastosowaniach biznesowych. Omówiono także potencjalne wektory ataków. Wskazano ataki typu „czarna skrzynka” jako najbardziej prawdopodobne scenariusze ataków i omówiono je bardziej szczegółowo.
Źródło:
Informatyka Ekonomiczna; 2020, 3 (57); 65-72
1507-3858
Pojawia się w:
Informatyka Ekonomiczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of data mining models in solving the problem of imbalanced classes based on the example of an online marketing campaign
Wykorzystanie modeli data mining w rozwiązywaniu problemu niezrównoważonych klas na przykładzie kampanii marketingowych w Internecie
Autorzy:
Łapczyński, Mariusz
Surma, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/424980.pdf
Data publikacji:
2015
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
C&RT
Random Forest
imbalanced class problem
online social network
banner ad campaign
Opis:
While building predictive models in analytical CRM, researchers often encounter the problem of imbalanced classes (skewed distributions of dependent variables), which consists in the fact that the number of observations belonging to one category of the dependent variable is much lower than the number of observations belonging to the second category of that variable. This is related to such areas as churn analysis, customer acquisition models and cross and up-selling models. The purpose of the paper is to present a predictive model that was built to predict the response of Internet users to banner advertising. The dataset used in the study came from an online social network which offers advertisers banner campaigns targeting its users. The advertising campaign of a cosmetics company was carried out in the autumn of 2010 and was mainly targeted at young women. A user of this service was described by 115 independent variables – 3 out of which were demographic variables (sex, age, education), and the remaining 112 referred to the user’s online activity. While building the model there appeared the problem of imbalanced classes due to the low number of users who clicked on the banner ad. The number of cases amounted to 81,000, while the number of positive reactions to the banner was 207, which constitutes approximately 0.25% of the dependent variable. During the study, two popular data mining tools were utilized – the decision trees C&RT and Random Forest. The second goal of this paper is to compare the performance of the predictive models based on both these analytical tools.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2015, 3 (49); 9-19
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies