Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sattar, Abdul" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
System identification and heuristic control of segmented ailerons for enhanced stability of fixed wing UAVS
Autorzy:
Sattar, Abdul
Wang, Liuping
Mohamed, Abdulghani
Fisher, Alex
Powiązania:
https://bibliotekanauki.pl/articles/2141835.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
fixed-wing UAV
PID control
segmented control surfaces
system identification
Opis:
Different from a conventional aircraft, an investigation on system identification and control design has been carried out on a small fixed‐wing unmanned aerial vehicle (UAV) with segmented ailerons. The multiple aileron setup is configured as a multi‐input and single‐output system, and each segment is modeled as a control input. Experiments are conducted in the wind tunnel to determine the frequency responses of the system and the corresponding transfer functions. Multiple PID controllers are designed and implemented in a cascaded form for each control surface. Furthermore, a heuristic switching control strategy is implemented for the aircraft where the multiple aileron segments perform as a single aileron pair in a normal flight condition and adapt to multi‐segment control when encountering severe turbulence or significant angle reference changes. Experimental results reveal that although each control surface can stabilize the aircraft, the proposed control strategy by combining the multiple actuation surfaces reduces the mean squared errors for the roll angle up to 38 percent in the highly turbulent en vironment providing superior disturbance rejection properties.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2021, 15, 3; 3-14
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble Model for Network Intrusion Detection System Based on Bagging Using J48
Autorzy:
Otoom, Mohammad Mahmood
Sattar, Khalid Nazim Abdul
Al Sadig, Mutasim
Powiązania:
https://bibliotekanauki.pl/articles/2201908.pdf
Data publikacji:
2023
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
cyber security
network intrusion
ensemble learning
machine learning
ML
Opis:
Technology is rising on daily basis with the advancement in web and artificial intelligence (AI), and big data developed by machines in various industries. All of these provide a gateway for cybercrimes that makes network security a challenging task. There are too many challenges in the development of NID systems. Computer systems are becoming increasingly vulnerable to attack as a result of the rise in cybercrimes, the availability of vast amounts of data on the internet, and increased network connection. This is because creating a system with no vulnerability is not theoretically possible. In the previous studies, various approaches have been developed for the said issue each with its strengths and weaknesses. However, still there is a need for minimal variance and improved accuracy. To this end, this study proposes an ensemble model for the said issue. This model is based on Bagging with J48 Decision Tree. The proposed models outperform other employed models in terms of improving accuracy. The outcomes are assessed via accuracy, recall, precision, and f-measure. The overall average accuracy achieved by the proposed model is 83.73%.
Źródło:
Advances in Science and Technology. Research Journal; 2023, 17, 2; 322--329
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies