Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mikołajczyk, Urszula" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Evaluation of exposure to nano-sized particles among transport and vehicle service workers
Autorzy:
Bujak-Pietrek, Stella
Mikołajczyk, Urszula
Powiązania:
https://bibliotekanauki.pl/articles/2087543.pdf
Data publikacji:
2021-11-19
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
ultrafine particles
particle number concentration
particle surface area concentration
nanoparticles exposure
diesel engine exhaust
particle number size distribution
Opis:
BackgroundExposure to fine and ultrafine particles from transport processes is a main consequence of emissions from engines, especially those with self-ignition. The particles released in these processes are a source of occupational and environmental particles exposure. The aim of this study was to assess the fine and nano-sized particles emission degree during work connected with transport and vehicle servicing.Material and MethodsThe tests were carried out at 3 workplaces of vehicles service and maintenance (a car repair workshop, a truck service hall, and a bus depot) during 1 work day in each of them. Measurements were performed using the following devices: DISCmini meters, GRIMM 1.109 optical counter and the DustTrak monitor. The number, surface area and mass concentration, and the number size distribution were analyzed.ResultsThe mean number concentration (DISCmini) increased during the analyzed processes, ranging from 4×104 p/cm3 to 8×104 p/cm3, and the highest concentration was found in the car repair workshop. The particles mean diameters during the processes ranged 31–47 nm, depending on the process. An increase in the surface area concentration value was observed in correlation with the particles number, and its highest concentration (198 m2/cm3) was found during work in the car repair workshop. The number size distribution analysis (GRIMM 1.109) showed the maximum value of the number concentration for particles sized 60 nm. The mean mass concentrations increased during the tested processes by approx. 40–70%, as compared to the background.ConclusionsAccording to the measurement results, all the workplaces under study constituted a source of an increase in all analyzed parameters characterizing emissions of nano-sized particles. Such working environment conditions can be harmful to the exposed workers; therefore, at such workplaces solutions for minimizing workers’ exposure, such as fume hoods or respiratory protection, should be used. Med Pr. 2021;72(5):489–500
Źródło:
Medycyna Pracy; 2021, 72, 5; 489-500
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Exposure to diesel exhaust fumes in the context of exposure to ultrafine particles
Autorzy:
Bujak-Pietrek, Stella
Mikołajczyk, Urszula
Kamińska, Irena
Cieślak, Małgorzata
Szadkowska-Stańczyk, Irena
Powiązania:
https://bibliotekanauki.pl/articles/2177429.pdf
Data publikacji:
2016-07-04
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
occupational exposure
ultrafine particles
diesel engine exhaust
particles number concentration
particles surface area concentration
SEM/EDS analysis
Opis:
Objectives Diesel exhaust fumes emission is a significant source of ultrafine particles, the size of which is expressed in nanometers. People occupationally exposed to diesel exhaust particles include mainly workers servicing vehicles with engines of this type. This article presents the analysis of measurements of ultrafine particle concentrations occurring in the bus depot premises during the work connected with everyday technical servicing of buses. Material and Methods The measurements were carried out in the everyday servicing (ES) room of the bus depot before, during and after the work connected with bus servicing. Determinations included: particle concentrations in terms of particle number and particle surface area, and mass concentrations of aerosol. Results Mean value of number concentration of 10- to 1000-nm particles increased almost 20-fold, from 7600 particles/cm³ before starting bus servicing procedures to 130 000 particles/cm³ during the bus servicing procedures in the room. During the procedures, the mean surface area concentration of particles potentially deposited in the alveolar (A) region was almost 3 times higher than that of the particles depositing in the tracheo-bronchial (TB) region: 356.46 μm²/cm³ vs. 95.97 μm²/cm³, respectively. The mass concentration of the fraction of particulate matter with aerodynamic diameter 0.02–1 μm (PM₁) increased 5-fold during the analyzed procedures and was 0.042 mg/m³ before, and 0.298 mg/m³ while the procedures continued. Conclusions At the time when bus servicing procedures continued in the ES room, a very high increase in all parameters of the analyzed particles was observed. The diesel exhaust particles exhibit a very high degree of fragmentation and, while their number is very high and their surface area is very large, their mass concentration is relatively low. The above findings confirm that ultrafine particles found in diesel exhaust fumes may be harmful to the health of the exposed people, and to their respiratory tract in particular.
Źródło:
International Journal of Occupational Medicine and Environmental Health; 2016, 29, 4; 667-682
1232-1087
1896-494X
Pojawia się w:
International Journal of Occupational Medicine and Environmental Health
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies