Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kocić, Ivan" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Beyond clinical care: the pharmacoeconomic and research roles of pharmacists in Poland
Autorzy:
Pawłowska, Iga
Krzyzaniak, Natalia
Pawłowski, Leszek
Kocić, Ivan
Powiązania:
https://bibliotekanauki.pl/articles/895697.pdf
Data publikacji:
2019-04-30
Wydawca:
Polskie Towarzystwo Farmaceutyczne
Źródło:
Acta Poloniae Pharmaceutica - Drug Research; 2019, 76, 2; 381-385
0001-6837
2353-5288
Pojawia się w:
Acta Poloniae Pharmaceutica - Drug Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
How to teach pharmacology to medical students during the COVID-19 pandemic? Students’ perceptions of novel, online forms of teaching
Autorzy:
Pawłowska, Iga J.
Pawłowski, Leszek
Krzyżaniak, Natalia
Kocić, Ivan
Powiązania:
https://bibliotekanauki.pl/articles/2203185.pdf
Data publikacji:
2022-05-31
Wydawca:
Gdański Uniwersytet Medyczny
Tematy:
Undergraduate
COVID-19 pandemic
Medical education
Online teaching
Pharmacology
Opis:
BackgroundThe COVID-19 pandemic has forced the introduction of many changes into medical student education. The aim of the study was to evaluate medical students’ perceptions of a Pharmacology course delivered at a Polish medical university before and during the pandemic.Material and methodsA cross-sectional anonymous survey conducted among medical students.Results90 out 122 students participated in the study. The vast majority of students found pharmacology to be a difficult subject. The surveyed group of students preferred active methods of learning, including: teacher explanations (86.5%) and discussions (70.8%) during in-person classes, real-time student-teacher meetings via dedicated web-based platforms (73%) during online classes. Students most often described e-learning as interesting (58.9%) and timesaving (52.2%). Less than 30% described it as stressful, difficult, time-consuming and boring. The most commonly reported advantage was the possibility for students to adjust their pharmacology study-time to a more personalised schedule (82.5%). The main disadvantage included the loss of in-person face-to-face contact with the teacher (61.8%).ConclusionsOverall, students held positive attitudes towards the new teaching format and adapted well to the new conditions. Modern innovations enabling medical students to continue their studies efficiently and effectively during the pandemic must be developed and introduced into practice.
Źródło:
European Journal of Translational and Clinical Medicine; 2022, 5, 1; 33-39
2657-3148
2657-3156
Pojawia się w:
European Journal of Translational and Clinical Medicine
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning in pharmacology: opportunities and threats
Autorzy:
Kocić, Ivan
Kocić, Milan
Rusiecka, Izabela
Kocić, Adam
Kocić, Eliza
Powiązania:
https://bibliotekanauki.pl/articles/25728738.pdf
Data publikacji:
2022-09-06
Wydawca:
Gdański Uniwersytet Medyczny
Tematy:
machine learning
pharmacology
deep learning
artificial intelligence
drug research and development
Opis:
Introduction This review aims to present briefly the new horizon opened to pharmacology by the deep learning (DL) technology, but also to underline the most important threats and limitations of this method. Material and Methods We searched multiple databases for articles published before May 2021 according to the preferred reported item related to deep learning and drug research. Out of the 267 articles retrieved, we included 50 in the final review. Results DL and other different types of artificial intelligence have recently entered all spheres of science, taking an increasingly central position in the decision-making processes, also in pharmacology. Hence, there is a need for better understanding of these technologies. The basic differences between AI (artificial intelligence), DL and ML (machine learning) are explained. Additionally, the authors try to highlight the role of deep learning methods in drug research and development as well as in improving the safety of pharmacotherapy. Finally, future directions of DL in pharmacology were outlined as well as possible misuses of it. Conclusions DL is a promising and powerful tool for comprehensive analysis of big data related to all fields of pharmacology, however it has to be used carefully.
Źródło:
European Journal of Translational and Clinical Medicine; 2022, 5, 2; 88-94
2657-3148
2657-3156
Pojawia się w:
European Journal of Translational and Clinical Medicine
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies