Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Karafová, Gabriela" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Generalized Fractional Total Colorings of Complete Graph
Autorzy:
Karafová, Gabriela
Powiązania:
https://bibliotekanauki.pl/articles/30145422.pdf
Data publikacji:
2013-09-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
fractional coloring
total coloring
complete graphs
Opis:
An additive and hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let $P$ and $Q$ be two additive and hereditary graph properties and let $r,s$ be integers such that $r\geq s$. Then an $\frac{r}{s}$-fractional $(P,Q)$-total coloring of a finite graph $G=(V,E)$ is a mapping $f$, which assigns an $s$-element subset of the set $\{1,2,...,r\}$ to each vertex and each edge, moreover, for any color $i$ all vertices of color $i$ induce a subgraph of property $P$, all edges of color $i$ induce a subgraph of property $Q$ and vertices and incident edges have assigned disjoint sets of colors. The minimum ratio $\frac{r}{s}$ of an $\frac{r}{s}$-fractional $(P,Q)$-total coloring of $G$ is called fractional $(P,Q)$-total chromatic number $\chi_{f,P,Q}^{''}(G)=\frac{r}{s}$. Let $k=$ sup$\{i:K_{i+1}\in P\}$ and $l=$ sup$\{i:K_{i+1}\in Q\}$. We show for a complete graph $K_{n}$ that if $l\geq k+2$ then $\chi_{f,P,Q}^{''}(K_{n})=\frac{n}{k+1}$ for a sufficiently large $n$.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 4; 665-676
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized Fractional Total Colorings of Graphs
Autorzy:
Karafová, Gabriela
Soták, Roman
Powiązania:
https://bibliotekanauki.pl/articles/31339383.pdf
Data publikacji:
2015-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
fractional coloring
total coloring
automorphism group
Opis:
Let \( \mathcal{P} \) and \( \mathcal{Q} \) be additive and hereditary graph properties and let $r$, $s$ be integers such that $ r \ge s $. Then an $ r/s$-fractional (\( \mathcal{P} \),\( \mathcal{Q} \))-total coloring of a finite graph $ G = (V, E) $ is a mapping $f$, which assigns an $s$-element subset of the set $ {1, 2, . . ., r}$ to each vertex and each edge, moreover, for any color $i$ all vertices of color $i$ induce a subgraph with property \( \mathcal{P} \), all edges of color $i$ induce a subgraph with property \( \mathcal{Q} \) and vertices and incident edges have been assigned disjoint sets of colors. The minimum ratio of an \( \frac{r}{s} \)-fractional (\( \mathcal{P} \),\( \mathcal{Q} \))-total coloring of G is called fractional (\( \mathcal{P} \), \( \mathcal{Q} \))-total chromatic number \( \chi_{f, \mathcal{P} ,\mathcal{Q} }^{ \prime \prime } (G) = \frac{r}{s} \). We show in this paper that \( \chi_{f, \mathcal{P} ,\mathcal{Q} }^{ \prime \prime } \) of a graph \( G \) with \( o(V (G)) \) vertex orbits and \( o(E(G)) \) edge orbits can be found as a solution of a linear program with integer coefficients which consists only of \( o(V (G)) + o(E(G)) \) inequalities.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 3; 463-473
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies